• Title/Summary/Keyword: , depth profile

Search Result 892, Processing Time 0.024 seconds

The Comparison of Beam Data between Measured Beam Data and Calculated Beam Data Using Treatment Planning System (6 MV 광자선의 측정데이터와 치료계획장치에 의한 계산데이터의 비교)

  • Park Sung Kwang;Cho Byung Chul;Cho Heung Lae;Ahn Ki Jung
    • Progress in Medical Physics
    • /
    • v.16 no.3
    • /
    • pp.125-129
    • /
    • 2005
  • The first step in the commissioning procedure of a treatment planning system is always verification of the basic beam data. In this work, we have measured POD curves and beam profiles between 1 $\times$ 1 cm$^{2}$ and 40 $\times$ 40 cm$^{2}$ . In an attempt, Pinnacle 7.4f detect discrepancies between predicted dose distribution and delivered dose distribution. The discrepancies between measurement data and caculation data was found. The delivered dose was underestimated in field but overestimated out of field. The D$_{max}$ depth of 1 $\times$ 1 cm$^{2}$ was reduced about 2 mm. For the larger field size ($\geq$4$\times$4 cm$^{2}$, the beam profile and PDD curve showed good agreement between measurement data and calculation data.

  • PDF

Morphological Features of Bedforms and their Changes due to Marine Sand Mining in Southern Gyeonggi Bay (경기만 남부에 발달된 해저지형의 형태적 특징 및 해사채취에 의한 변화)

  • Kum, Byung-Cheol;Shin, Dong-Hyeok;Jung, Seom-Kyu;Jang, Seok;Jang, Nam-Do;Oh, Jae-Kyung
    • Ocean and Polar Research
    • /
    • v.32 no.4
    • /
    • pp.337-350
    • /
    • 2010
  • This study conducted sedimentological and geophysical surveys for 3 years (2006-2008) in southern Gyeonggi Bay, Korea to elucidate temporal changes in subaqueous dune morphology on a sand ridge trending northeast to southwest that has been excavated by marine sand mining. The sand ridge (~20 m in height, ~2 km in width and 3~4 km in length) has a steep slope on the NW side and a gentle slope on the SE side, creating an asymmetric profile. Large (10~100 m in length) and very large (>100 m in length) dunes occurring on the SE side of the ridge show a northeastward asymmetrical shape, whereas dunes on the NW side destroyed by marine sand mining display a southwestward asymmetry. The comparison between Flemming (1988)'s correlation and the height-length correlation of this study indicates that tidal current and availability of sand sediment are major controlling factors to the development and maintenance of dunes. Depth and sedimentary characteristics (grain size) are not likely to be major controlling factors, but indirectly influence dune growth by hydrological and sedimentary processes. The length and the height of dunes decrease toward the southeastern trough away from the crest of the ridge. These features result from the decrease of tidal current and sediment availability. The length and the height of dunes on the southeast side decrease gradually over time. This is a result of the interaction between tidal current and the decrease in sediment availability due to sediment extraction by marine sand mining. Marine sand mining has destroyed the dunes directly, causing irregular shapes of shorter length and lower height. The coarse fraction of suspended sediments is transported and deposited very close to the sand pit. By contrast, relatively fine sediments are transported by the tidal current and deposited over a wide range by the settling-lag effect, resulting in a decrease of sediment grain size in the area where suspended sediments are deposited. In addition, marine sand mining, decreases the height of dunes. Therefore, morphological and sedimentological characteristics of dunes around the sand pits will be significantly changed by future sand mining activities.

A Study on the Applicability of Levee Leakage Monitoring System Using Movable TDR Sensor (제방 누수 모니터링을 위한 이동식 TDR 센서의 적용성 평가)

  • Cho, Jinwoo;Choi, Bong-Hyuck;Cho, Won-Beom;Kim, Jin-Man
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.3
    • /
    • pp.1-10
    • /
    • 2014
  • Several types of methods such as resistivity survey, ground penetration radar, etc are used for detection of levee leakage and according to the river design guidelines detection of levee leakage is performed by measuring the hydraulic conductivity of levee soil. But, the former can not verify the leakage point and degree of saturation, the latter is an after treatment method. Movable sensor, which is a high-tech TDR system developed since 2000, can obtain directly the dielectric constant profile covering the whole depth of levee. In this study, laboratory and field model experiments were carried out using movable TDR sensor in order to evaluate the applicability as detection system of levee leakage, As the result, movable TDR system has proven to be 3 times more sensitive to water contents than dry unit weight, and the results conclude that the dielectric constant, water contents and density of the ground proved to have a correlation among them, and the dielectric constant is expected to be a basic data on detection of levee leakage.

An Electrochemical Evaluation on the Crevice Corrosion of 430 Stainless Steel with Variation of Crevice Wide by Micro Capillary Tubing Method (Micro Capillary Tube 방법을 이용한 430 스테인레스강 틈의 폭변화에 따른 틈부식의 전기화학적 평가)

  • Na, Eun-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.250-254
    • /
    • 2003
  • In this study, the IR drop theory was adopted to explain the initiation of crevice corrosion in the framework of IR drop in crevice electrolyte. Furthermore, the electrochemical polarization was measured to study the mechanism of crevice corrosion for type STS430 stainless steel. lest method adopts under condition that the size of specimen is $10\times20\times5mm,\;in\;1N\;H_2SO_4+0.1N\;NaCl$ solution, and the artificial crevice gap sizes are three kinds, the Micro capillary tube size is inner diameter 0.04 mm, outer diameter 0.08 mm. Crevice corrosion is measured under the applied voltage of passivation potential -200mV/SCE, resulted from anodic potentio-dynamic polarization to the external surface along the crevice. The potential difference was measured by depth profile by Micro capillary tube which inserted in the crevice. The obtained results of this study showed that 1) As artificial crevice gap size became narrow, the current density was increased, whereas no crevice corrosion was found in the crevice gap size $3\times0.5\times16mm\;in\;1N\;H_2SO_4+0.1N\;NaCl\;solution\;at\;20^{\circ}C$ 2) potential of the crevice was about from -220 to -358mV which is lower than that of external surface potential of -200mV The results so far confirmes that the potential drop(so-called IR drop) in the crevice is one of the major mechanisms the process of crevice corrosion for 430 stainless steel.

Analysis of the under Pavement Cavity Growth Rate using Multi-Channel GPR Equipment (멀티채널 GPR 장비를 이용한 도로하부 공동의 크기 변화 분석)

  • Park, Jeong Jun;Kim, In Dae
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.60-69
    • /
    • 2020
  • Purpose: Cavity growth process monitoring is to periodically monitor changes in common size and topography for general and observational grades to predict the rate of common growth. The purpose of this study is to establish a systematic cavity management plan by evaluating the general and observational class community in a non-destructive method. Method: Using GPR exploration equipment, the acquired surface image and the surrounding status image are analyzed in the GPR probe radargram in depth, profile, and cross section of the location. The exact location is selected using the distance and surrounding markings shown on the road surface of the initial detection cavity, and the test cavity is analyzed by calling the radar at the corresponding location. Result: As a result of monitoring tests conducted at a cavity 30 sites of general and observation grade, nine sites have been recovered. Changes in scale were seen in 21 cavity locations, and changes in size and grade occurred in 13 locations. Conclusion: The under road cavity is caused by various causes such as damage to the burial site, poor construction, soil leakage caused by groundwater leakage, waste and ground vibration. Among them, indirect factors could infer the effects of groundwater and localized rainfall.

Seasonal Variations of the Heat Flux in Muddy Intertidal Sediments near the Jebu Island during the Ebb Tides in the West Coast of Korea (서해 제부도 해역의 간조시 갯벌 퇴적층내 지온 및 열수지의 계절변화)

  • Na, Jung-Yul;Yu, Sung-Hyup;Seo, Jang-Won
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • Vertical temperature distributions in muddy intertidal sediments near the Jebu Island on the west coast of Korea were obtained during the period of ebb tide which occurred in day time. The observations of mud temperature were made with thermistor embedded probe at 2cm interval for 18cm-layer of sediment for five different months of the year. Temporal changes in the vertical profile of the sediment temperature are strongly depend on the air temperature, the previous time of flood tide and the time of ebb tide. Heat exchanges in the surface layer (0-2 cm) in terms of magnitude and direction are greater than and opposite to those in the deeper sediment layer (8-12 cm), respectively and do not show any significant seasonal variations. In general, the surface layer gains heat while the deeper layer loses the heat. By using the 1-D diffusion equation temporal vertical profiles of the sediment temperature were obtained and were compared with the observed ones. The results show that in the sediment layer below 4 cm-depth the heat transport is predominantly by molecular diffusion. The average magnitude of heat flux into the sediment layer (0-18 cm) during the ebb tide when the mudflats were exposed in the middle of the day were between 4.1 and $28.9\;W/m^2$.

  • PDF

Geomorphic Processes of Masung Basin (마성분지(麻城盆地)의 지형생성작용(地形生成作用))

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.1
    • /
    • pp.39-49
    • /
    • 1996
  • There is a limestone basin surrounded by the mountains consisted of Paleozoic sedimentary and metamorphic rocks in the Masung, Munkyung city, Kyungsangpook do. The purpose of this paper is to elucidate the geomorphic processes of the gentle hillslopes in the marginal piedmont of Masung basin. To do so, I analyzed deposits over hillslopes and the relation ship between the distance from the divide and the height(above sea level) at the longitudinal profile of the hillslope, and considered interrelation between the distributions of the gentle hillslopes(less than 230m) and lithology. Geomorphic processes of Masung basin are as follow: (1) The depth of deposits over hillslope increases toward downstream of the hillslope. Most gravels within deposits, whose lithology is limestone, are those eroded at the boundary(overthrust fault zone) between the back-mountain and the hillslope. Deposits at the outward margin of hillslope is well sorted. and moderately imbricated. (2) Hillslope at the margin of the basin(160-230m asl) is formed by the action of 'the flow with channel'. At the boundary between the soft rock(limestone; basin floor) and hard rock(sedimentary and metamorphic rock; back-mountain), the relatively weak limestone is eroded to fresh bedrock by the subsequent action of the overland flow, and therefore discontinuity in slope appeared. (3) After hills lopes were formed, sediments(boulders and fine material) produced during dissection in back-mountain buried deposits over hillslope. In conclusion, geomorphic processes of Masung basin is 'differential erosion due to differentiation of lithological hardness' having suggested as geomorphic processes of granitic basin. However it is not 'removal of weathering material due to sheetflow' but 'erosion due to the overland flow with channel'.

  • PDF

A Time Variable Modeling Study of Vertical Temperature Profiles in the Okjung Lake (옥정호의 연직 수온분포에 관한 시변화 모델 연구)

  • Park, Ok-Ran;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.2 s.98
    • /
    • pp.79-91
    • /
    • 2002
  • A time variable modeling study was performed for seasonal variations of vertical temperature profiles in the Okjung Lake located in upstream of the Sumjin River. Based on the model structure of the US Army Corps of Engineer's CE-QUAL-W2, the lake was divided into 3 branches, 50 longitudinal segments and 49 vertical layers and vertical profiles of water temperature and current velocity were simulated over one year. The model results were calibrated and verified against vertical profiles of water temperature measured every month from March 1998 to February 1999 at 5 different locations. The model results showed a good agreement with the field measurements. The hydrologic balance during this period was validated by comparing the simulated values of surface elevation level with the measured data. There was some discrepancy in July data between the model results and the fleld measurements. This could be attributed partially to the inadequacy of the model to the highly hydrodynamic nature of water body and partially to the lack of accuracy in local atmospheric temperature data during summer monsoon period. The model results have shown that there was no seasonal over-turn in most part of the Okjung Lake, where water temperature maintained above $4^{\circ}C$ over one year. In the upstream shal-low area (depth<20 meter), however, temperature at surface layer fell below $4^{\circ}C$ and water was frozen such that slight over-turn would occur during winter period. From this study, we concluded that the Okjung Lake is oligomictic. This conclusionis significantly different from the general pattern that the lakes located from $20^{\circ}C$ to $40^{\circ}C$ latitude would be warm monomictic. From the examination of simulated current velocity distribution, it was found that the upstream inflows would infiltrate into mesolimnion of the lake during hydrodynamic summer monsoon periods due to the thermal density of water.

Oxidation characteristics of solder alloys for the photovoltaic module (태양전지 묘듈용 솔드 합금의 산화 특성)

  • Kim, Hyo Jae;Lee, Young Eun;Lee, Gu;Kang, Gi Hwan;Choi, Byung Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.98-104
    • /
    • 2014
  • Photovoltaic (PV) cell is considered as one of the finest ways to utilize the solar power. A study of improving solar cell's efficiency is important because the lifetime of solar cell is determined by photovoltaic module technology. Therefore, oxidation (and/or corrosion) of solder materials will be one of the primary yield and long-term reliability risk factor. Recently, the development of lead-free solder alloy has been done actively about lead-free solder alloys of the thermodynamic and mechanical properties. However, the oxidation behavior have rarely been investigated In this study, the oxidations of 60 wt% Sn-40 wt% Pb, 62 wt% Sn-36 wt% Pb -2 wt% Ag, 50wt% Sn-48 wt% Bi-2 wt% Ag alloys for the interconnect ribbon after exposure in atmosphere at $100^{\circ}C$ for several times were investigated. The wettability of 62 wt% Sn-36 wt% Pb-2 wt% Ag and 50 wt% Sn-48 wt% Bi-2 wt% Ag solders was also studied to compare with that of 60 wt% Sn-40 wt% Pb alloy. The results howed that the zero cross time and the wetting time of 50 wt% Sn-48 wt% Bi-2 wt% Ag solder were better than other two samples. The surface of tested samples was analyzed by XPS. The XPS result showed that in all samples, SnO grew first and then the mixture of SnO and $SnO_2$ was detected. $SnO_2$ grew predominantly for the long time aging. Moreover XPS depth profile analysis has found surface enrichment of tin oxide.

Wet Etching Characteristics of Cu Surface for Cu-Cu Pattern Direct Bonds (Cu-Cu 패턴 직접접합을 위한 습식 용액에 따른 Cu 표면 식각 특성 평가)

  • Park, Jong-Myeong;Kim, Yeong-Rae;Kim, Sung-Dong;Kim, Jae-Won;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 2012
  • Three-dimensional integrated circuit(3D IC) technology has become increasingly important due to the demand for high system performance and functionality. In this work, BOE and HF wet etching of Cu line surfaces after CMP were conducted for Cu-Cu pattern direct bonding. Step height of Cu and $SiO_2$ as well as Cu dishing after Cu CMP were analyzed by the 3D-Profiler. Step height increased and Cu dishing decreased with increasing BOE and HF wet etching times. XPS analysis of Cu surface revealed that Cu surface oxide layer was partially removed by BOE and HF wet etching treatment. BOE treatment showed not only the effective $SiO_2$ etching but also reduced dishing and Cu surface oxide rather than HF treatment, which can be used as an meaningful process data for reliable Cu-Cu pattern bonding characteristics.