DOI QR코드

DOI QR Code

Morphological Features of Bedforms and their Changes due to Marine Sand Mining in Southern Gyeonggi Bay

경기만 남부에 발달된 해저지형의 형태적 특징 및 해사채취에 의한 변화

  • Kum, Byung-Cheol (Marine Environment & Pollution Prevention Research Department, KORDI) ;
  • Shin, Dong-Hyeok (Marine Environment & Pollution Prevention Research Department, KORDI) ;
  • Jung, Seom-Kyu (Naval Technology Research Group, KORDI) ;
  • Jang, Seok (Marine Environment & Pollution Prevention Research Department, KORDI) ;
  • Jang, Nam-Do (Ocean Satellite Remote Sensing & Observation Technology Research Department, KORDI) ;
  • Oh, Jae-Kyung (Department of Ocean Sciences, College of Natural Sciences Inha University)
  • 금병철 (한국해양연구원 해양환경.방제연구부) ;
  • 신동혁 (한국해양연구원 해양환경.방제연구부) ;
  • 정섬규 (한국해양연구원 해양특성연구단) ;
  • 장석 (한국해양연구원 해양환경.방제연구부) ;
  • 장남도 (한국해양연구원 해양위성.관측기술연구부) ;
  • 오재경 (인하대학교 자연과학대학 해양과학과)
  • Received : 2010.07.21
  • Accepted : 2010.09.16
  • Published : 2010.12.30

Abstract

This study conducted sedimentological and geophysical surveys for 3 years (2006-2008) in southern Gyeonggi Bay, Korea to elucidate temporal changes in subaqueous dune morphology on a sand ridge trending northeast to southwest that has been excavated by marine sand mining. The sand ridge (~20 m in height, ~2 km in width and 3~4 km in length) has a steep slope on the NW side and a gentle slope on the SE side, creating an asymmetric profile. Large (10~100 m in length) and very large (>100 m in length) dunes occurring on the SE side of the ridge show a northeastward asymmetrical shape, whereas dunes on the NW side destroyed by marine sand mining display a southwestward asymmetry. The comparison between Flemming (1988)'s correlation and the height-length correlation of this study indicates that tidal current and availability of sand sediment are major controlling factors to the development and maintenance of dunes. Depth and sedimentary characteristics (grain size) are not likely to be major controlling factors, but indirectly influence dune growth by hydrological and sedimentary processes. The length and the height of dunes decrease toward the southeastern trough away from the crest of the ridge. These features result from the decrease of tidal current and sediment availability. The length and the height of dunes on the southeast side decrease gradually over time. This is a result of the interaction between tidal current and the decrease in sediment availability due to sediment extraction by marine sand mining. Marine sand mining has destroyed the dunes directly, causing irregular shapes of shorter length and lower height. The coarse fraction of suspended sediments is transported and deposited very close to the sand pit. By contrast, relatively fine sediments are transported by the tidal current and deposited over a wide range by the settling-lag effect, resulting in a decrease of sediment grain size in the area where suspended sediments are deposited. In addition, marine sand mining, decreases the height of dunes. Therefore, morphological and sedimentological characteristics of dunes around the sand pits will be significantly changed by future sand mining activities.

Keywords

References

  1. 건설교통부 (2005) 금년 수도권 모래수급은 원활할 전망, 2005년 골재수급계획 확정. 건설교통부 보도자료 4 p
  2. 국립해양조사원 (2008) 황해 아산만 중앙천퇴 거동연구. 110 p
  3. 김백운, 이상호, 양재삼 (2005) 서해 배타적경제수역(EEZ)내 해사채취구역의 지형변화. 한국해양학회지 26(8):836-843
  4. 김승우, 이윤오, 장정해 (1977) 아산만 일대 해저퇴적물 조사. 자원개발연구소 조사연구보고 2:163-244
  5. 김승우, 장정해, 박용안 (1978) 아산만 일대 해저퇴적물에 대하여. 광산지질 11(2):81-88
  6. 박문진 (2008) 화옹(남양만) 방조제에 따른 아산만의 조석변화. 한국해양학회지 "바다" 13(4):320-324
  7. 박정기 (1990) 한강하구역에서의 점토광물에 대한 연구. 이학석사 학위논문, 인하대학교, 59 p
  8. 방효기, 이치원, 오재경 (1994a) 한반도 서부대륙붕에 발달한 사퇴의 발생기원과 특성. 한국해양학회지 29(3):217-227
  9. 방효기, 이호영, 장정해, 이치원, 오재경 (1994b). 경기만에 발달한 조류성사퇴의 역사 및 특성. 한국해양학회지 29(3):278-286
  10. 손규희, 한경남 (2007) 경기만의 해사채취에 의한 생물군집 구조변경. Ocean and Polar Res 29(3):205-216 https://doi.org/10.4217/OPR.2007.29.3.205
  11. 오재경, 방기영 (2003) 한강 유역과 경기만 퇴적환경의 연계성. 한국해양학회지 "바다"8(3):22-236
  12. 유옥환, 이형곤, 이재학, 김동성 (2006) 경기만에서 해사채취가 대형저서동물 군집구조에 미치는 영향. Ocean and Polar Res 28(2):129-144 https://doi.org/10.4217/OPR.2006.28.2.129
  13. 장학봉 (2005) 해사자원의 지속가능한 이용방안. 월간 해양 수산 249:83-97
  14. 최동림, 김성렬, 석봉출, 한상준 (1992) 한반도 황해 중부 태안반도 근해 사질퇴적물의 이동. 한국해양학회지 27(1): 66-77
  15. 환경부 (1999) 해양 환경감시 및 평가기술 - 해저층 퇴적물 이동 관측 및 예측기술. 한국해양연구원, 359 p
  16. 해양수산부 (2005) 해사채취의 친환경적 관리방안 연구(I). 861 p
  17. 해양수산부 (2006) 해사채취의 친환경적 관리방안 연구(II). 950 p
  18. 해양수산부 (2007) 해사채취의 친환경적 관리방안 연구(III). 1174 p
  19. Allen JRL (1968) The nature and origin of bed-form hierarchies. Sedimentology 10(3):161-182 https://doi.org/10.1111/j.1365-3091.1968.tb01110.x
  20. Amos CL, King EL (1984) Bedforms of the Canadian eastern seaboard: a comparison with global occurrences. Mar Geol 57:167-208 https://doi.org/10.1016/0025-3227(84)90199-3
  21. Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. J Sediment Petrol 60(1):160-172 https://doi.org/10.2110/jsr.60.160
  22. Bartholdy J, Bartholomae A, Flemming BW (2002) Grainsize control of large compound flow-transverse bedforms in a tidal inlet of the Danish Wadden Sea. Mar Geol 188:391-413 https://doi.org/10.1016/S0025-3227(02)00419-X
  23. Berne S, Castaing P, Le Drezen E, Lericolais G (1993) Morphology, internal structure and reversal of asymmetry of large subtidal dunes in the entrance to Gironde Estuary (France). J Sediment Res 63(5):780-793
  24. Chang TS, Kim SP, Yoo DG, Lee SJ, Lee EI (2010) A large mid-channel sand bar in the marcrotidal seaway of Asan Bay, Korea; 30 years of morphologic response to anthropogenic impacts. Geo-Mar Lett 30:15-22 https://doi.org/10.1007/s00367-009-0146-6
  25. Chough SK (1983) Marine geology of Korean Seas. IHRDC, Boston, 157 p
  26. Chu YS (2000) Sediment dynamics and maintenance processes of linear tidal sand body; Jangan sandbank in the central west coast of Korea. Ph.D. Thesis, Seoul National University, 240 p
  27. Dyer KR (1986) Coastal and Estuarine Sediment Dynamics. Wiley & Sons, Chichester, England. 342 p
  28. Ernstsen VB, Noormets R, Winter C, Hebbeln D (2005) Development of subaqueous barchanoid-shaped dunes due to lateral grain size vaiability in a tidal inlet channel of the Danish Wadden Sea. J Geophy Res 110:F04S08, doi:10.1029/2004JF000180
  29. Ernstsen VB, Noormets R, Hebbeln D, Bartholoma A, Flemming BW (2006) Precision of high-resolution multibeam echo sounding coupled with high-accuracy positioning in a shallow water coastal environment. Geo- Mar Lett 26:141-149 https://doi.org/10.1007/s00367-006-0025-3
  30. Flemming BW (1988) Zur Kassifikation Subaquatischer, Strmungstransversaler Transportkrper. Boch Geol Geotech Arb 29:44-47
  31. Flemming BW (2000a) The role of grain size , water depth and flow velocity as scaling factors controlling the size of subaqueous dunes, in Marine Sandwave Dynamics. In: Proceeding of an International Workshop Held in Lille, France, 23-24 March 2000
  32. Flemming BW (2000b). On the dimensional adjustment of subaqueous dunes in response to changing flow conditions: a conceptual proess model. In: Trentesaux, A., Garlan, T. (Eds.), Marine Sandwave Dynamics. International Workshop, University of Lille, France, 23 and 24 March 2000
  33. Folk RL (1968) Petrology of the sedimentary Rocks. Hemphill, New York, 170 p
  34. Heaps W (2004) Standards for the calibration of multibeam echosounders, are new standards required? Hydrogr J 111:26-27
  35. IHO (1998) IHO Standards for hydrographic Surveys. International Hydrographic Baureau, Monaco, 26 p
  36. Jin JH (2001) A sedimentological study of long sediment cores in the eastern Yellow Sea. Ph.D Thesis, Seoul National University, 179 p
  37. Jackson RG (1976) Large scale ripples of the lower Wabash River. Sedimentology 23:593-623 https://doi.org/10.1111/j.1365-3091.1976.tb00097.x
  38. Kim CS, Lim HS (2009) Sediment dispersal and deposition due to sand mining in the coastal waters of Korea. Continental Shelf Res 29:194-204 https://doi.org/10.1016/j.csr.2008.01.017
  39. Klein G DeV, Park YA, Chang JH, Kim CS (1982) Sedimentology of a subtidal, tide-dominated sandy body in the Yellow Sea, southwest Korea. Mar Geol 50:221- 240 https://doi.org/10.1016/0025-3227(82)90140-2
  40. Kubicki A, Manso F, Diesing M (2007) Morphological evolution of gravel and sand extraction pits, Tromper Wiek, Baltic Sea. Estuarine Coastal and Shelf Science 71:647-656 https://doi.org/10.1016/j.ecss.2006.09.011
  41. Kubo YS, Soh W, Machiyama H, Tokuyama H (2004) Bedforms prodeuced by the Kuroshio Current passing over the northern Izu Ridge. Geo-Mar Lett 24(1):1-7 https://doi.org/10.1007/s00367-003-0134-1
  42. Li MZ, King EL (2007) Multibeam bathymetric investigations of the morphology of sand ridges and associated bedforms and their relation to storm processes, Sable Island Bank, Scotian Shelf. Mar Geol 243:200-228 https://doi.org/10.1016/j.margeo.2007.05.004
  43. McCave IN (1971) Sand waves in the North Sea off the coast of Holland. Mar Geol 10(3):199-225 https://doi.org/10.1016/0025-3227(71)90063-6
  44. Off R (1963) Rhythmic linear sand bodies caused by tidal currents. Bull Am Assoc Pet Geol 47:324-341
  45. Park K, Oh JH, Kim HS, Im HH (2002) Case Study: Mass transport mechanism in Kyunggi Bay aroudn Han river mouth, Korea. J Hydraulic Eng 128:257-267 https://doi.org/10.1061/(ASCE)0733-9429(2002)128:3(257)
  46. Park SC, Lee SD (1994) Depositional patterns of sand ridges in tide-dominated shallow water environments: Yellow Sea coast and South Sea of Korea. Mar Geol 120:59-103
  47. Park SC, Lee BH, Han HS, Yoo DG, Lee CW (2006) Late quaternary stratigraphy and development of tidal sand ridges in the eastern Yellow Sea. J Sedi Res 76:1093-1105 https://doi.org/10.2110/jsr.2006.092
  48. Park SC, Han HS, Yoo DG (2003) Transgressive sand ridges on the mid-shelf of the southern sea of Korea (Korea Strait): formation and development in highenergy environment. Marine Geology 193:1-18 https://doi.org/10.1016/S0025-3227(02)00611-4
  49. Park SC, Yoo DG (1997) Bedform ditribution and sand transport trend on a subtidal sand ridge in a macrotidal bay, west coast of Korea. J Kor Soc Oce 32(4):181-190
  50. Swift DJP, Parker G, Lanfredi NW, Perillo G, Figge K (1978) Shoreface-connected sand ridges on American and European shelves-a comparison. Est Coast Mar Sci 7:257-273 https://doi.org/10.1016/0302-3524(78)90109-3
  51. Thornton EB, Sallenger A, conforto Sesto J, Egley L, McGee T, Parsons R (2006) Sand mining impacts on long-term dune erosion in southern Monterery Bay. Mar Geol 229:45-58 https://doi.org/10.1016/j.margeo.2006.02.005
  52. Van der Veen HH, Hulscher SJMH, Knaapen MAF (2006) Grain size dependency in the occurrence of sand waves. Ocean Dynamics 56:228-234 https://doi.org/10.1007/s10236-005-0049-7
  53. Van Landeghem KJJ, Wheeler AJ, Mitchell N, Sutton G (2009) Variations in sediment wave dimensions across the tidally dominated Irish Sea, NW Europe. Mar Geol 263:108-119 https://doi.org/10.1016/j.margeo.2009.04.003
  54. Van Lijn LC, Walstra DJR (2002) Morphology of mining areas and effect on coast; literature review. Report Z3079.01 Delft Hydraulics, Delft, Netherlands
  55. Wells DE, Monahan D (2002) IHO S44 standards for hydrographic surveys and the variety of requirements for bathymetric data. Hydrogr J 104:9-16
  56. Wienberg C, Hebbln D (2005) Impact of dumped sediments on subaqueous dunes, outer Weser Estuary, German Bight, southeastern North Sea. Geo-Mar Lett 25:43-53 https://doi.org/10.1007/s00367-004-0202-1

Cited by

  1. Dune Migration on an Offshore Sand Ridge in the Southern Gyeonggi Bay, Korea vol.35, pp.1, 2013, https://doi.org/10.4217/OPR.2013.35.1.051
  2. Monitoring of Tidal Sand Shoal with a Camera Monitoring System and its Morphologic Change vol.39, pp.3, 2015, https://doi.org/10.5916/jkosme.2015.39.3.326
  3. Morphological and sedimentological changes of subaqueous dunes in the tide-dominated environment, Gyeonggi Bay vol.38, pp.6, 2014, https://doi.org/10.5916/jkosme.2014.38.6.761
  4. Effect of Sand Extraction on Meiobenthic Community of Jangbong-do in the Eastern Yellow Sea of Korea vol.32, pp.2, 2014, https://doi.org/10.11626/KJEB.2014.32.2.138
  5. Improvements in the Marine Environmental Survey on Impact of Seawater Qualities and Ecosystems due to Marine Sand Mining vol.20, pp.2, 2014, https://doi.org/10.7837/kosomes.2014.20.2.143