• 제목/요약/키워드: (p, q)-trigonometric functions

검색결과 5건 처리시간 0.024초

(p, q)-LAPLACE TRANSFORM

  • KIM, YOUNG ROK;RYOO, CHEON SEOUNG
    • Journal of applied mathematics & informatics
    • /
    • 제36권5_6호
    • /
    • pp.505-519
    • /
    • 2018
  • In this paper we define a (p, q)-Laplace transform. By using this definition, we obtain many properties including the linearity, scaling, translation, transform of derivatives, derivative of transforms, transform of integrals and so on. Finally, we solve the differential equation using the (p, q)-Laplace transform.

p-ADIC q-HIGHER-ORDER HARDY-TYPE SUMS

  • SIMSEK YILMAZ
    • 대한수학회지
    • /
    • 제43권1호
    • /
    • pp.111-131
    • /
    • 2006
  • The goal of this paper is to define p-adic Hardy sums and p-adic q-higher-order Hardy-type sums. By using these sums and p-adic q-higher-order Dedekind sums, we construct p-adic continuous functions for an odd prime. These functions contain padic q-analogue of higher-order Hardy-type sums. By using an invariant p-adic q-integral on $\mathbb{Z}_p$, we give fundamental properties of these sums. We also establish relations between p-adic Hardy sums, Bernoulli functions, trigonometric functions and Lambert series.

CERTAIN UNIFIED INTEGRALS INVOLVING A PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND

  • Choi, Junesang;Agarwal, Praveen
    • 호남수학학술지
    • /
    • 제35권4호
    • /
    • pp.667-677
    • /
    • 2013
  • A remarkably large number of integrals involving a product of certain combinations of Bessel functions of several kinds as well as Bessel functions, themselves, have been investigated by many authors. Motivated the works of both Garg and Mittal and Ali, very recently, Choi and Agarwal gave two interesting unified integrals involving the Bessel function of the first kind $J_{\nu}(z)$. In the present sequel to the aforementioned investigations and some of the earlier works listed in the reference, we present two generalized integral formulas involving a product of Bessel functions of the first kind, which are expressed in terms of the generalized Lauricella series due to Srivastava and Daoust. Some interesting special cases and (potential) usefulness of our main results are also considered and remarked, respectively.

SOME RELATIONS ON PARAMETRIC LINEAR EULER SUMS

  • Weiguo Lu;Ce Xu;Jianing Zhou
    • 대한수학회보
    • /
    • 제60권4호
    • /
    • pp.985-1001
    • /
    • 2023
  • Recently, Alzer and Choi [2] introduced and studied a set of the four linear Euler sums with parameters. These sums are parametric extensions of Flajolet and Salvy's four kinds of linear Euler sums [9]. In this paper, by using the method of residue computations, we will establish two explicit combined formulas involving two parametric linear Euler sums S++p,q (a, b) and S+-p,q (a, b) defined by Alzer and Choi, which can be expressed in terms of a linear combinations of products of trigonometric functions, digamma functions and Hurwitz zeta functions.

SOME NEW IDENTITIES CONCERNING THE HORADAM SEQUENCE AND ITS COMPANION SEQUENCE

  • Keskin, Refik;Siar, Zafer
    • 대한수학회논문집
    • /
    • 제34권1호
    • /
    • pp.1-16
    • /
    • 2019
  • Let a, b, P, and Q be real numbers with $PQ{\neq}0$ and $(a,b){\neq}(0,0)$. The Horadam sequence $\{W_n\}$ is defined by $W_0=a$, $W_1=b$ and $W_n=PW_{n-1}+QW_{n-2}$ for $n{\geq}2$. Let the sequence $\{X_n\}$ be defined by $X_n=W_{n+1}+QW_{n-1}$. In this study, we obtain some new identities between the Horadam sequence $\{W_n\}$ and the sequence $\{X_n\}$. By the help of these identities, we show that Diophantine equations such as $$x^2-Pxy-y^2={\pm}(b^2-Pab-a^2)(P^2+4),\\x^2-Pxy+y^2=-(b^2-Pab+a^2)(P^2-4),\\x^2-(P^2+4)y^2={\pm}4(b^2-Pab-a^2),$$ and $$x^2-(P^2-4)y^2=4(b^2-Pab+a^2)$$ have infinitely many integer solutions x and y, where a, b, and P are integers. Lastly, we make an application of the sequences $\{W_n\}$ and $\{X_n\}$ to trigonometric functions and get some new angle addition formulas such as $${\sin}\;r{\theta}\;{\sin}(m+n+r){\theta}={\sin}(m+r){\theta}\;{\sin}(n+r){\theta}-{\sin}\;m{\theta}\;{\sin}\;n{\theta},\\{\cos}\;r{\theta}\;{\cos}(m+n+r){\theta}={\cos}(m+r){\theta}\;{\cos}(n+r){\theta}-{\sin}\;m{\theta}\;{\sin}\;n{\theta},$$ and $${\cos}\;r{\theta}\;{\sin}(m+n){\theta}={\cos}(n+r){\theta}\;{\sin}\;m{\theta}+{\cos}(m-r){\theta}\;{\sin}\;n{\theta}$$.