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SOME NEW IDENTITIES CONCERNING THE HORADAM
SEQUENCE AND ITS COMPANION SEQUENCE

REFiK KESKIN AND ZAFER SiAR

ABSTRACT. Let a,b, P, and Q be real numbers with PQ # 0 and (a,b) #
(0,0). The Horadam sequence {Wy} is defined by Wy = a, W1 = b and
Wpn = PWyp_1 + QWp_2 for n > 2. Let the sequence {X,} be defined
by Xn = Wp41 + QW —1. In this study, we obtain some new identities
between the Horadam sequence {W,} and the sequence {X,}. By the
help of these identities, we show that Diophantine equations such as
2? — Pry — y? = +(b? — Pab — a?)(P? + 4),
z? — Pzy + y? = —(b® — Pab+ o?)(P? — 4),
22 — (P? 4 4)y® = +4(b*> — Pab — d?),
and
z2 — (P? — 4)y? = 4(b% — Pab + a?)
have infinitely many integer solutions x and y, where a,b, and P are
integers. Lastly, we make an application of the sequences {Wp} and {X,, }
to trigonometric functions and get some new angle addition formulas such
as
sinrésin(m +n + r)0 = sin(m + )8 sin(n + r)0 — sin mf sinnb,
cosrf cos(m + n + r)0 = cos(m + r)f cos(n + r)f — sin mf sin nd,

and

cosrfsin(m + n)@ = cos(n + )0 sin mb + cos(m — r)f sinnb.

1. Introduction

Many number sequences can be defined, characterized, evaluated, and classi-
fied by linear recurrence relations with certain orders. In this paper, we consider
the sequences defined by linear recurrence relations with second order. The best
known of these sequences is called the Horadam sequence, which was introduced
in 1965 by Horadam [3]. The Horadam sequence {W,,} = {W,,(a,b; P,Q)} is
defined by

Wo=a, Wy =b and W, = PW,_1+QW,_5 forn > 2,
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where a, b, P, and @ are real numbers with PQ # 0 and (a, b) # (0,0). Partic-
ular cases of {W,} are the Lucas sequence of the first kind {U,(P,Q)} =
{W,(0,1; P,Q)} and the Lucas sequence of the second kind {V,,(P,Q)} =
{W,(2,P; P,Q)}. Instead of U,(P,Q) and V,(P,Q), we write U, and V,,
respectively. If we define the sequence {X,} = {X,(a,b; P,Q)} by

Xo=2b—aP, X1 =bP +2a) and X, = PX,_1+ QX,_o forn > 2,

then it is convenient to consider it to be a companion sequence of {W,}, in
the same way that {V,,} is the companion of {U,}. Let a and /8 be the roots
of the equation 22 — Pz — @ = 0. Then o = (P + /P2 +4Q)/2 and 8 =
(P—+/P2+44Q)/2. Clearly a+ =P, a — 5 = y/P?+4Q, and af = —Q.
We will assume from now on that P? +4Q # 0. In [3], Binet formula express
the number W, in terms of a and S by

Aa™ — BB"

a—8
where A = b — a8, B =b— aa. Clearly, AB = b — abP — a?Q.

We obtain some identities concerning the Horadam sequence and its com-
panion sequence with the help of the matrices given in the next section. Some
of these identities are well known and some are new. But, since we prove these
identities by matrix method not used in the literature, we also give the proof of
the well known identities. Moreover, we show that some Diophantine equations
such as

2? — Pry — y* = £(b* — Pab — a*)(P* + 4),
22 — Pry +y* = —(b* — Pab+ a®)(P? — 4),
r? — (P? + 4)y* = +4(b* — Pab — a?),

and
z? — (P — 4)y* = 4(b*> — Pab + d?)

have infinitely many integer solutions = and y. Lastly, we make an application
of the sequences {W,,} and {X,} to trigonometric functions and get some new
angle addition formulas such as

sinrfsin(m +n + )0 = sin(m + r)fsin(n + )0 — sin mf sin nd,

cosrf cos(m +n + )0 = cos(m + )0 cos(n + r)f — sinmd sin nf,
and

cosrfsin(m + n)f = cos(n + r)0 sinmb + cos(m — r)0 sin nd.

2. Preliminaries

In this section, we will give some close relations between the sequences {W,, },
{X.}, {U,}, and {V,,} and some lemmas, which will be used in the next sec-
tions.

(2) Xn = Wn+1 + QWn—l = PWn + QQWn—la
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(3) (P? +4Q)W,, = Xni1 + QX1

(4) Wy = bU, + aQU,—1,

and

(5) Xn=bVy, +aQV,_1

for n > 1. From (2), it can be seen that Binet formula of {X,,} is given by
(6) X, = Aa" + Bp".

It is well known that the numbers U,, and V,, for negative subscript are defined
as
-U,
(7) U ,=—adV_,=—+
(-Q) (-Q)
for n > 1. By using (1) together with (6), it is convenient to extend the
numbers W,, and X,, for negative subscript by

Ao~ — BB™"
W_, = A" - BF " and X_, = Aa™" + BS™".
a—p3
Then it follows that
—=bU,, + aUp 41 bV, —aVyi1
(8) W,=—F——adX_ ,, = ———
(-Q) (-Q)

and therefore
W_,=bU_p,+aQU_,,_1and X_,, =bV_,, + aQV_,_1.

Thus it is seen that the identities (1)—(7) are valid for all integers n. For more
information about the Horadam sequence one can consult [1,3,7-10]. Many
identities concerning the terms of the Lucas sequence of the first and second
kind can be proved by using Binet formulae, induction and matrices. In the
literature, the matrices
P Q P2 (P?+4Q)/2
{1 o}and[l/z P/2 }

are used to produce identities (see [2,6,11]). The n-th powers of these matrices,
which will be used in the next section, are

P Q1" [U, QU,
©) [1 o} _{ i QUM}
and

P2 (P?+4Q)/2 1" _ [ Va/2 (P?+4Q)U,/2
(10) [ 1/2 P/2 } B { Uyn/2 V,/2 ]

The following two lemmas are given in [11].

Lemma 1. If X is a square matriz satisfying the relation X? = PX + QI,
then X™ = U, X + QU,,_11 for every n € Z.
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Lemma 2. Let X be an arbitrary 2 x 2 matriz. Then X% = PX + QI if and
only if X is of the form

|z y . _
X_[z P_w]wzthdetX— Q

or X = M, where A € {a,8}, a = (P + /P?2+4Q)/2, and § = (P —
VP2 +4Q)/2.

3. Main theorems

Theorem 3. If X is a square matriz satisfying the relation X% = PX + QI,
then (bX + aQD)X"™ =W, 11 X + QW, I for every n € Z.

Proof. By Lemma 1 and the identity (4), it follows that
(bX +aQX™ =bX" 4 aQX"
= b(Uns1 X + QUnI) + aQ(UnX + QUp_11)
= (bUn+1 + aQUn)X + Q(bUn + aQUn,l)I
= W1 X + QW, 1. O

The following corollary is given in [5]. Now we give a simple proof of it.

Corollary 4. (ba+aQ)a™ = aW,11+QW,, and (bf+aQ)B" = BW,11+QW,
for everyn € Z.

Proof. Let X = [3 2] Then det X = o8 = —@Q and this implies that

(ba + aQ)a™ 0 ] - { aWui1 + QW, 0
0 (b8 + aQ)B" 0 BWii1 + QW
by Theorem 3. Therefore, (ba + aQ)a™ = aW, 11 + QW,, and (b5 + aQ)S" =
BWpi1 + QW,, for every n € Z. O

Corollary 5. W,, = % and X,, = Aa™ + BB" for every n € Z.

Proof. The result follows from (2) and Corollary 4. O

In this section, we will obtain some identities concerning the sequences men-
tioned above by using Theorem 3. Some of these identities, particularly given
in Theorems 11, 14, 20, 23, 27, 29 and Corollaries 15, 16, 17, 22, 24, 30 are
new, and others are well known. And we will use these identities to obtain
some new formulas related to trigonometric functions. Also, we will use these
identities in order to obtain integer solutions of some Diophantine equations.

Theorem 6. Wm—i—n = Wm+1 U, +QWmUn—1 and (_Q)n m—n — anUn+1 -
Win1Uy, for every m,n € Z.
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Proof. Let X = [ 9]. Then X? = PX + QI and therefore DX™*" =

10
Wintn+1X + QWiinI by Theorem 3, where D = bX + aQI. Hence,

W, QW
— _ m—+n+2 m+n+1
DX = Wm+n+1X + QWm+nI = |: Wm+n+1 QWm+n :|

and
DX™" = Win—nt1X + QWi—nl = |: %m:nii QC%/H_:L+1 ] .
Also,
Winia QW, U, QU
m4n __ m n __ m+2 m—+1 n+1 n
and
m—-n __ m -n __ Wm+2 QWm+1 U—TL-‘rl QU—TL
DX o (DX )X o |: Werl QWm Ufn QUfnfl

by (9). Using (7), the proof follows.

Corollary 7. W2, — Wy, Wyio = (—Q)™AB for every m € Z.

Proof. By using the equality det(DX™) = det(D) (det(X))™, we get W2 | —
WoWini2 = (=Q)™AB by the proof of Theorem 6, where det(D) = —Q(b? —

abP — a’Q) = —QAB.

By using the above corollary, the following corollary can be given.

Corollary 8. W2 — PW,,W,,_1 — QW2 _, = (—Q)™ *AB for every m € Z.

Since AB = b? — Pab — a?Q, taking Q@ = 1 and @ = —1, respectively, we

have:

Corollary 9. Let a, b, and P be integers. Then the Diophantine equations
2?2 — Pzy — y? = b? — Pab — a® and 2% — Pxy — y?> = —(b* — Pab — a?) have
infinitely many integer solutions given by (x,y) = Wapt1, Wap) and (z,y) =

(Wapn, Wayp—1) with n € Z, respectively, where W,, = W, (a, b; P,1).

Corollary 10. Leta, b, and P > 3 be integers. Then the Diophantine equation
2?2 — Pxy + y? = b% — Pab + a® has infinitely many integer solutions given by

(x,y) = Wy, Wy_1) with n € Z, where W,, = Wy, (a,b; P,—1).

Theorem 11.
i) QX2 — (P? +4Q) X, Wyi1 + (P% + 4Q)Wﬁ+1 = —(—Q)"P?AB,
ii) X?H_l — (P2 +4Q) X, 1W, + Q(P? +4Q)W2 = (-Q)"P?AB
for everyn € Z.
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Proof. i) We have W,, = w by (2). Substituting this value of W, into
the equation W2 — PW,,W,,_1 — QW2_, = (—Q)" ' AB given in Corollary 8,
we get

2Wn+1 - Xn)2 _p (QWn+1 - Xn

(—Q)"1AB = ( ! !

) Wn—l - Qws—l'
Then it follows that

(=Q)" 'P?AB = AW} | — AW, 1 Xy, + X7 — 2P*W, 1 Wiia
+ P2W, 1 X, — P?QW2_,
=AW2, | — AW, X, + X1
— P°W,_1(2Wyp1 — X + QWy_1)
Xn - Wn+1

=4W2, | — AW, 1 X, + X2 — P?( 3

)Wn+1

using (2). It is seen that

_(_Q)HP2AB = 4QW3+1 - 4QW77,+1X77, + QXEI - P2(Xn - Wn+1)Wn+1
=4QW2 | —4QWy i1 X + QX2 — PP X, Wyi1 + PPW2,,
= QX; — (P?+4Q)W, 1 Xy, + (P? +4Q)W7

ii) We have W, 11 = X"“%QW" by (2). Substituting this value of W, ;1
into the equation W2, — PW, .1 W,, — QW2 = (—Q)"AB given in Corollary
8, a similar argument shows that

(—Q)"PPAB = X7, — (P* +4Q) X011 W, + Q(P? +4Q)W.

If we take @ = 1 and respectively @ = —1 in the above theorem, we get:

Corollary 12. Let a, b, and P be integers. Then the Diophantine equations
22— (P?+4)xy+(P%*+4)y? = P%2(b>—Pab—a?) and 2*—(P?+4)xy+(P?+4)y* =
—P2%(b? — Pab — a®) have infinitely many integer solutions given by (z,y) =
(Xont1, Wan) or (Xon—1,Way) and (x,y) = (Xon, Won—1) or (Xon, Wony1)
with n € Z, respectively, where W,, = Wy, (a,b; P,1) and X,, = X,,(a,b; P, 1).

Corollary 13. Let a, b, and P > 3 be integers. Then the Diophantine equa-
tions 2 — (P? — 4)xy — (P? — 4)y?> = P%(b* — Pab + a®) and —2% — (P? —
Mzy+ (P? —4)y? = — P2(b? — Pab+a?) have infinitely many integer solutions
given by (z,y) = (Xpt1, Wa) and (z,y) = (Xpn, Whi1) withn € Z, respectively,
where W, = W, (a,b; P,—1) and X,, = X,,(a,b; P,—1).

Theorem 14. X, 1 = X, U1+ QX 1U, and (—Q)" Xy = X 1U,
—XUp—1 for every m,n € Z.
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Proof. 1f we take X = [/ %2], then we have X™ = {U{}:l Q%Zil} by (9). It can

be seen that EX™ = [X)}”:l Q%():il} by (2) and (5), where

| X QXo
E_{Xo Qxl]

Thus, it follows that

[ bP+20Q  Q(2b—aP)
“| @-aP) aP?+2aQ-bP |

X QX D QXom_
EXern: m+n+1 m—+n :| a d EXm n|: m—n—+1 m—n :| )
|: Xern QXm+n71 " men Qmenfl

Moreover, we get
EXm-‘rn — (EXm)Xn — |: Xm-‘rl QX’I?’I :| |: UTL+1 QUn :|

Xm  QXm—1 U  QUn
and
m—n __ m -n __ Xm+1 QXm UfnJrl QUfn
EX N (EX )X N |: Xm QXm—l :| |: U—n QU—n—l '
So, from (7), the proof follows. O

Corollary 15. 2X,, 1 = X, Vi, + (P? +4Q)W,, Uy, and 2W,, 40y = Wi Vi +
XUy for every m,n € Z.

Proof. Using (2), we get
2Xm4n = XnUnt1 + QXm-1Un + X Upy1 + QX1 Uy
=X, Uni1 + QX 1Up + X (PUL + QUp 1) + QX1 Uy,
= X0 (Unt1 + QUp1) + (PXon +2QX . 1)Un
= XV + (P? +4Q)W,,U,,
by Theorem 14. Similarly, it is seen that 2W,,,, = W,,,V,, + X,,,U,, by using

(3) and Theorem 6. O
Corollary 16. X,, 1 X1 — X2, = (—=Q)™ Y(P? +4Q)AB for every m € Z.
Proof. Since det(EX™) = det(E)(det X)™, the proof follows easily. O

From the above corollary, we can give the following.

Corollary 17. X2 — PX,, X1 — QX2 | = —(—Q)™ (P2 + 4Q)AB for
every m € Z.

Corollary 18. Let a, b, and P be integers. Then the Diophantine equations
22— Pry—y? = (b>—Pab—a?)(P?*+4) and 2>~ Pzy—y? = —(b*—Pab—a?)(P*+
4) have infinitely many integer solutions given by (z,y) = (Xon, Xon—1) and
(z,y) = (Xon+1, Xon) with n € Z, respectively, where X, = X,,(a,b; P,1).

Corollary 19. Leta, b, and P > 3 be integers. Then the Diophantine equation
2?2 — Pry+y? = —(b? — Pab+a?)(P? —4) has infinitely many integer solutions
given by (z,y) = (Xpn, Xn—1) with n € Z, where X,, = X,,(a,b; P, —1).
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Theorem 20. 2(—Q)"W,—p, = W, Vi, = XUy and 2(—Q)" X, = Xn Vi —
(P? +4Q)W,,U,, for every m,n € Z.

Proof. Let X = “722 (PQ';;LQQ)/Q}. Then X? = PX + QI and therefore we have

DX = W,,_, X + QW,—n_1I by Theorem 3, where D = bX + aQI.
Hence, using (2), we obtain
DXminil = Wm,—nX + QWm—n—ll

N Wm—n/2 (PWm—n + QQWm_n_l) /2

B { Xim—n/2 (P?2+4Q)Wp_0n/2 }

On the other hand, using (10), we get
DXm—n—l — (DXm—l)X—n

X (PPHAQWi

— 2 2
W Xm

2

Vo,/2 (P2+4Q)U_,/2
L U_,/2 V_n/2
and from (7), the proof follows. O
Corollary 21. X,,V, = Xm+n+(_Q)nmen7 WiV = Wm+n+(_Q>nWmfn
and (P? + 4Q)W,, Uy, = Xppin — (—Q)" Xyp—p for every m,n € Z.

Proof. From Theorem 20 and Corollary 15, the proof is obvious. O

Corollary 22. Wy, = X, U, +a(—Q)" = W,,V,, —a(—Q)"™ and Xz, = X,,V,,+
(aP — 2b)(—Q)™ for every n € Z.
Proof. From Theorem 20 and Corollary 21, the proof follows. O

Theorem 23. X,, X, — (P?+4Q)W,,W,, = 2(—=Q)"ABV,,,_,, for everym,n €
7.

Proof. Using Binet formulae in (1) and (6), we get
(LHS) = (Aa™ + BB™)(Aa™ + BB")

(Aa™ — BB™) (Aa™ — BS™)
— (P? +4Q) p— o

= (Aa™ + BB™)(Aa™ + BB") — (Aa™ — BB™)(Aa™ — BB")
= 24B(a™B" + a"B™) = 2AB(aB)" (™" + F7)
= 2AB(_Q)anfn 0

Taking m = n in the above theorem, we get the following corollary.

Corollary 24. X2 — (P2 +4Q)W2 = 4(—Q)"AB for every n € Z.
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Corollary 25. Let a, b, and P be integers. Then the Pell equations x> —

(P? +4)y? = 4(b?> — Pab — a®) and 2% — (P? 4+ 4)y? = —4(b*> — Pab — a?) have
infinitely many integer solutions given by (x,y) = (Xon, Wan) and (z,y) =
(Xopn—1, Wap_1) with n € Z, respectively, where X,, = X,(a,b; P,1), W,, =
Wy (a,b; P,1).

Corollary 26. Let a, b, and P > 3 be integers. Then the Pell equation
22 — (P? — 4)y?> = 4(b®> — Pab + a®) has infinitely many integer solutions
given by (x,y) = (Xpn, W) with n € Z, where X,, = X,(a,b; P,—1), W, =
Wy(a,b; P,—1).

The identities given in the following two theorems will be used in the next
section to give some new angle addition formulas for trigonometric functions.

Theorem 27. Let m, n, and r € Z with r # 0. Then
Uer+n+r = Wm+rUn+T - (_Q)erUny
UTWernfr = WmUn - <_Q)TWmfrUn7ra

and
U’r’Wm+n - WmUn+r - (_Q)TWmfrUn-

Proof. 1If we consider the matrix X = [7 p”_ ] with det X = —Q and take

—Z

T = U[}:l, then by Corollary 2.3 in [11] and Theorem 3, we get
U Lo by Uririy 4 qu,_, yU,
DX"=| U U Ur I
bz bP —b (}“ +aQ 2Un Upir — l’}“ U,
where D = bX + aQI. Using (4), (7), (8), and Theorem 6, we see that
i W'I‘ U’ﬂ T
DXn — Ur UT r
bz _b(QUr—l) + G'QU’I‘ U _(_Q) Un—r
L U, " U,
B W7»+1 Un-H“
b —_— U
ol B Q)yrw A 2):U
e Tl—r U, T"—T
i WrJrlUnJrr WrJrlUn - b(_Q)rUnfr
_ I U,
o bUn+r - (_Q)rwlfrUn (_Q)zrwlfrUnfr
i z ( 0. byzU, + 02

Since det X = —Q and x = U['}jl, it follows that

_ PUUp +QUE = U2,y Up(PUpss +QU,) — U2,

U2 02

Yz
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o UTUT+2 - Ur2+1 _ _(_Q)T
B U2 U2

by Corollary 7. Thus

_ _ T
WT+1[2]n+r _ byZUn WTJrlUn b( Q) Unr)
DX" = U Uy
5 bUnJr'r‘ - (_Q)TwlfrUn byZU + (_Q)%‘WlfrUnfr
L Ur " U2
i n+r+1
Dndrdl W,
- e,
i Wi %T’l—’"“
by (4) and Theorem 6. If we consider the matrix multiplication DX™¥n~1 =
(DXm_l) X", then we get the result. O

Corollary 28. W, W,_, — W2 = —AB(-Q)" "U? for alln, r € Z.
Proof. By the proof of Theorem 27, we see that

_(_Q>TWn+rWn—r + (_Q)TW»,%
U?
_(_Q)T (W71,+7“Wn—r - Wﬁ)
U?
On the other hand, since det DX™~1 = (det D) (det X)" ', it follows that

det DX" ! =

det DXn—l _ <_(_Q)TWT+1I[}[;1—T + b2(_Q)T) (_Q)n—l
[—(—Q) Wiy (gt ) + 2 (—Q)
= ( (U§) ) (_Q)n—l
o -aQU’!'WT'-‘rl - bQ (W7'+1U7'—1 + b(_Q)r_l)‘| (*Q)n71
= 02
[aQU, Wiyi1 — bQU,W, )
_ [aQ +(1]2 Q } (—Q)"!
= <Q (aWTJ[rJl B bWT)) (7Q)n71
— AB(-Q)"
by (4), (8), and Theorem 6. Thus, we get the equality W, W, _, — W2 =
—AB(-Q)"""U2. O

Theorem 29. Let m,n,and r € Z. Then
V7~Xm+n+r = Xm+rvn+r + (7Q)T(P2 + 4Q)WmUna
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Vter+n7r = (P2 + 4Q)WmUn + (_Q)erfranra

and
V;"Wern = WmVnJrr + (_Q)TmerUTP
Proof. If we consider the matrix X = [2 p?iz} with det X = —@ and take
T = V{;:l, then by Corollary 2.3 in [11] and Theorem 3, we get
LS by Veryy 4 qu,_, yU,
DX"=| W v Ve v
bz bP —b "/:1 +aQ 2U, Upi1 — V“ Un
where D = bX 4 aQI. Using (5), (7), (8), and Theorem 14, we see that
X
r+1 by Vn+r yUn
pxn=| W Ve ,
bz _b(Q‘/T—l) + G'Q‘/r U (_Q) Vn—r
L Ve " Ve
[ X Votr
o+ by -t yUp
- " - TX —r - rvn—r
I bz 7( Q)VT ! zU, 7( Qi/r
i XrJernJr’r XrJrlUn + b(_Q)TIan'r
————— + byzU,
o an+r + (_Q)TlerUn (_Q) Tleranr
i z ( V. byzU,, + V2
Since det X = —@Q and = = V{,jl , it follows that
_PVVia +QV2 - VA VPV +QV) - VA,
yz = Vr2 - V;?
ViV =V, (=Q)(P? +4Q)
B V2 B V2
by Corollary 16. Thus, a simple computation shows that
[ X’I" Vn T Xr Un b - TVn—r
% + byzU, +1Un +0(=Q) >
DX" = Y v
2 an+T + (_Q)TXl—TUTL byZU + (_Q) TXl—TV’I'L—T
L Ve " V2
i XTL T
+r+1 YW
- ' - Tanr
|, G
If we consider the matrix multiplication DX™"~1 = (DX™~!) X" then we
get the result. O

Corollary 30. X, X, — (P2 +4Q)W2 = AB(-Q)"""V,2 for alln, r € Z.
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Proof. By the proof of Theorem 29, we see that

(=Q)" Xnir Xnr = (=Q)"(P? + 4Q)W2
‘/7‘2
(_Q)T (Xn+TXn7r - (P2 + 4Q)W3)

V2

T

det DX" ! =

On the other hand, since det DX™~! = (det D) (det X)™ ", it follows that

det Danl _ <(_Q)TX’I”+1X1T ;22(_Q)T(P2 + 4Q)> (_Q)nfl
[ () - Rt 4]
- VTQ (_Q)
_ [aQViXi1 = bQ (X1 Veoy — b(—Q)" 1 (P? + 4@))] o
_ =
= O’Q‘/T’Xr—i-‘l/; bQVTXT:| (7Q)n71
_ Q (aXr—i-l - bX7) n—
- (A=) o
= AB(-Q)"

by (5), (8), and Theorem 29. Thus, we get the equality X, ;,X,_, — (P? +
4Q)W7 = AB(-Q)""V.2. O

4. An application of the sequences {W,} and {X,} to
trigonometric functions

We consider the following recurrence relations, known as Simpson’s Formulae
(see [4]) related to trigonometric functions:
sin(n + 2)0 = 2 cosOsin(n + 1)8 — sinnd,
cos(n + 2)0 = 2cosf cos(n + 1)0 — cosnb.
It is clear that these relations satisfy the characteristic equation 22— Pz—Q = 0

for P = 2cosf and @ = —1. In this case, if we take b = 2cosf, P = 2cos¥,
and Q = —1, then we get

o P+ \/P2+4Q 2cosf ++/4cos? —4
B 2 B 2

=cosf +isinf

and

_ P—\/P?+4Q  2cosf —+/4cos? 0 —4

5 5 = cosf —isinf,

B
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and therefore a — 8 = 2isinf, o+ 3 = 2cosf. Thus, from the Binet formula
of {W,}, we have (see also [4])

Aa™ — Bp"
(11) W, =W, (a,2cos0;2cos6,—1) = %ﬁﬁ
(b — ap) [cosn + isinnd] — (b — aa) [cosnf — i sinnb]
= o

=acosnb + (2 — a) sinnb cot §
= (—asin(n — 1)0 4+ 2sinnf cos h) /sin 6.
Moreover, from the equality X,, = W, 11 + QW,,_1, we have
(12) Xn = W1+ QWi
acos(n+1)0 + (2 — a)sin(n + 1)f cot 0
—acos(n —1)§ — (2 —a)sin(n — 1) cot §
= —2asinnfsind + (2 — a) cot O (2sin O cosnb)
— 2asinnfsin @ + 4 cosnb cos § — 2a cosné cos f

= —2acos(n —1)0 4+ 4cosnf cosb.

From the above equations, it can be seen that

sin n#
1 = P, —1)= 1;2 —-1) =
(13) U, =U,(P,—-1) =W, (0,1;2cos 0, —1) p—
and
14 V, =Vo(P,—1) =X, (0,1;2cos0,—1) = 2cosnb.
(14) ( ) (

In view of the above identities, now we can give an application for each of the
Corollaries 22, 28, 30, and Theorems 27, 29.

Theorem 31.
sin(2n — 1)0 = 2sin(n — 1)0 cosnd + sin 6,
sin(2n — 1)0 = 2cos(n — 1)fsinnd — sin 6,
and
cos(2n — 1)0 = 2 cos(n — 1) cosnb — cos 6
for every n € Z.
Proof. Substituting the equations (11), (12), (13), and (14) into the equation
Wan = XU, + a(—Q)™ given in Corollary 22, we get
[(—asin(2n — 1)8 + 2sin 2nf cos 6) / sin 6]
sin nf
sin 6
[(—2a cos(n — 1)fsinnb + 2sin 2nd cos ) /sin ] + a

= [—2acos(n — 1)8 + 4 cos nf cos 0]

+a

and so
sin(2n — 1)0 = 2cos(n — 1)0sinnf — sin 6.
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Similarly, from the equations Ws,, = W,,V,, —a(—Q)" and Xa,, = X,,V,,+(aP—
2b)(—Q)™ given in Corollary 22, it follows that

sin(2n — 1)0 = 2sin(n — 1)0 cosnd + sin 6§,

and
cos(2n — 1) = 2 cos(n — 1)8 cosnb — cos b,
respectively. (I

In the following theorem, we will have been get some new formulas, which
are general form of angle addition formulas

cos(x 4+ y) = coszcosy — sinxsiny,

and
sin(z + y) = sinx cosy + siny cos x.
Theorem 32.
sinr@sin(m + n + )0 = sin(m + r)0 sin(n + )0 — sin mé sinnd,
cosrf cos(m +n + )0 = cos(m + )0 cos(n + r)f — sinmd sin nb,
and

cosrfsin(m + n)f = cos(n + r)f sin mb + cos(m — )0 sinnd
for every m,n,r € Z.
Proof. If r = 0, then the proof is obvious. Assume that r # 0. If we take a = 0,

then we have W,, = 2sinnf cos/sin @ and X,, = 4cosnb cosf. Also we know
that U, = 229 and V,, = 2cosnf. Substituting these values into equation

sin 6
UTWm—i-n—i-r = Wm+rU7z+r - (*Q)TWmUn

given in Theorem 27, one gets

S;n T; (2sin (m +n + )6 cosf/sin0)

in

_ . . sin(n + )0 ) . sin nd
= (2sin(m + r)f cos 0/ sin 9) g (2sinm# cos 0/ sin 0) im0

and thus

sinrf sin(m + n + r)0 = sin(m + r)0 sin(n + )0 — sin m@ sin nd.
Similarly, from the equations

ViXmintr = XmirVagr + (=Q) (P? + 4Q)Wy, Uy,
and
ViWeoin = Wil Vor + (=Q)" XU,

given in Theorem 29, it follows that

cosrf cos(m +n + )0 = cos(m + r)8 cos(n + )0 — sin mf sinnb,

and
cosrf sin(m + n)f = cos(n + r)0 sinmb + cos(m — r)0 sin nd,
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respectively. O
The relations in the following theorem are also given in [4].
Theorem 33.
sin(n 4 r)@sin(n — )0 — sin®> nf = —sin? rf

and
cos(n + 7)0 cos(n — )0 + sin® nf = cos? 16
for every m,n,r € Z.
Proof. If we take a=0, we have W,, =2sinnf cos 0/ sin § and X,, =4 cosnf cos 0.

Also we know that U, = S;?ﬂ’;e and V,, = 2cosnf. Substituting these values
into equation

WnJrTanr - Wr% = _(_Q)nirABUrz
given in Corollary 28, we get

<QSin(n+r)9c059> <2$in(n—r)9c050> B <4$in2 n9c0829>

sin 6 sin 0 sin® 6

sin® r0

= —4cos? = 5
sin” 6
and it follows that
sin(n + )@ sin(n — )0 — sin® nf = — sin® 6.
Similarly, from the equation
XntrXn—r — (P2 + 4Q)W3 = (_Q)THTABV;;
given in Corollary 30, we get

cos(n + )0 cos(n — )0 + sin® nf = cos? r6. O
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