• 제목/요약/키워드: (graded) UMT-domain

검색결과 3건 처리시간 0.015초

GRADED INTEGRAL DOMAINS AND PRÜFER-LIKE DOMAINS

  • Chang, Gyu Whan
    • 대한수학회지
    • /
    • 제54권6호
    • /
    • pp.1733-1757
    • /
    • 2017
  • Let $R={\oplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be an integral domain graded by an arbitrary torsionless grading monoid ${\Gamma}$, ${\bar{R}}$ be the integral closure of R, H be the set of nonzero homogeneous elements of R, C(f) be the fractional ideal of R generated by the homogeneous components of $f{\in}R_H$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. Let $R_H$ be a UFD. We say that a nonzero prime ideal Q of R is an upper to zero in R if $Q=fR_H{\cap}R$ for some $f{\in}R$ and that R is a graded UMT-domain if each upper to zero in R is a maximal t-ideal. In this paper, we study several ring-theoretic properties of graded UMT-domains. Among other things, we prove that if R has a unit of nonzero degree, then R is a graded UMT-domain if and only if every prime ideal of $R_{N(H)}$ is extended from a homogeneous ideal of R, if and only if ${\bar{R}}_{H{\backslash}Q}$ is a graded-$Pr{\ddot{u}}fer$ domain for all homogeneous maximal t-ideals Q of R, if and only if ${\bar{R}}_{N(H)}$ is a $Pr{\ddot{u}}fer$ domain, if and only if R is a UMT-domain.

UPPERS TO ZERO IN POLYNOMIAL RINGS OVER GRADED DOMAINS AND UMt-DOMAINS

  • Hamdi, Haleh;Sahandi, Parviz
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.187-204
    • /
    • 2018
  • Let $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}\;R_{\alpha}$ be a graded integral domain, H be the set of nonzero homogeneous elements of R, and ${\star}$ be a semistar operation on R. The purpose of this paper is to study the properties of $quasi-Pr{\ddot{u}}fer$ and UMt-domains of graded integral domains. For this reason we study the graded analogue of ${\star}-quasi-Pr{\ddot{u}}fer$ domains called $gr-{\star}-quasi-Pr{\ddot{u}}fer$ domains. We study several ring-theoretic properties of $gr-{\star}-quasi-Pr{\ddot{u}}fer$ domains. As an application we give new characterizations of UMt-domains. In particular it is shown that R is a $gr-t-quasi-Pr{\ddot{u}}fer$ domain if and only if R is a UMt-domain if and only if RP is a $quasi-Pr{\ddot{u}}fer$ domain for each homogeneous maximal t-ideal P of R. We also show that R is a UMt-domain if and only if H is a t-splitting set in R[X] if and only if each prime t-ideal Q in R[X] such that $Q{\cap}H ={\emptyset}$ is a maximal t-ideal.

GRADED PRIMITIVE AND INC-EXTENSIONS

  • Hamdi, Haleh;Sahandi, Parviz
    • 대한수학회논문집
    • /
    • 제33권2호
    • /
    • pp.397-408
    • /
    • 2018
  • It is well-known that quasi-$Pr{\ddot{u}}fer$ domains are characterized as those domains D, such that every extension of D inside its quotient field is a primitive extension and that primitive extensions are characterized in terms of INC-extensions. Let $R={\bigoplus}_{{\alpha}{{\in}}{\Gamma}}$ $R_{\alpha}$ be a graded integral domain graded by an arbitrary torsionless grading monoid ${\Gamma}$ and ${\star}$ be a semistar operation on R. The main purpose of this paper is to give new characterizations of gr-${\star}$-quasi-$Pr{\ddot{u}}fer$ domains in terms of graded primitive and INC-extensions. Applications include new characterizations of UMt-domains.