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GRADED PRIMITIVE AND INC-EXTENSIONS

Haleh Hamdi and Parviz Sahandi

Abstract. It is well-known that quasi-Prüfer domains are characterized

as those domains D, such that every extension of D inside its quotient field

is a primitive extension and that primitive extensions are characterized
in terms of INC-extensions.

Let R =
⊕

α∈Γ Rα be a graded integral domain graded by an arbi-
trary torsionless grading monoid Γ and ? be a semistar operation on R.

The main purpose of this paper is to give new characterizations of gr-?-

quasi-Prüfer domains in terms of graded primitive and INC-extensions.
Applications include new characterizations of UMt-domains.

1. Introduction

Let D be a (commutative) integral domain with quotient field qf(D). Re-
call that D is called a quasi-Prüfer domain if D has Prüfer integral closure
[8], and as a t-operation analogue, D is called a UMt-domain if every upper to
zero in the polynomial ring D[X] is a maximal t-ideal [12]. Gilmer and Hoff-
mann characterized quasi-Prüfer domains as those domains D, such that the
embedding D ⊆ qf(D) is a primitive-extension [10, Theorem 2], and Dobbs [6]
characterized primitive-extensions in terms of INC-domains.

Let R =
⊕

α∈ΓRα be a graded (commutative) integral domain graded by
an arbitrary grading torsionless monoid Γ. In [11] the authors studied quasi-
Prüfer and UMt-domain properties of graded integral domains. For this reason
they introduced the graded analogue of ?-quasi-Prüfer domains [4] called gr-
?-quasi-Prüfer domains. The graded integral domain R is called a gr-?-quasi-
Prüfer domain in case, if Q is a prime ideal in R[X] and Q ⊆ P [X], for some
homogeneous quasi-?-prime ideal P of R, then Q = (Q ∩ R)[X]. When ? = d
the identity operation on R, then we call the gr-d-quasi-Prüfer domain a gr-
quasi-Prüfer domain. It is shown that R is a gr-?-quasi-Prüfer domain if and
only if RP is a quasi-Prüfer domain, for each homogeneous quasi-?-prime ideal
P of R [11, Proposition 2.2]. Also it is known that R is a UMt-domain if
and only if R is a gr-t-quasi-Prüfer domain if and only if RP is a quasi-Prüfer
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domain for each homogeneous prime t-ideal P of R [11, Theorem 3.2]. If ? is a
(semi)star operation on R, then R is a gr-?f -quasi-Prüfer domain if and only
if R is a UMt-domain and ?̃ and w coincide on nonzero homogeneous ideals of
R [11, Theorem 3.9]. In particular R is a gr-quasi-Prüfer domain if and only
if R is a UMt-domain and d and w coincide on nonzero homogeneous ideals of
R. (Relevant definitions are reviewed in the sequel.)

The main purpose of this paper is to give new characterizations of gr-?-quasi-
Prüfer domains in terms of graded primitive extension and graded incomparable
or INC-extension (see [3], [6] and [10]).

To facilitate the reading of the paper, we review some basic facts on semistar
operations on (graded) integral domains. Let Γ be a nonzero torsionless grading
monoid, that is, Γ is a torsionless commutative cancellative monoid (written
additively), and 〈Γ〉 = {a− b | a, b ∈ Γ} be the quotient group of Γ; so 〈Γ〉 is a
torsionfree abelian group. It is known that a cancellative monoid is torsionless
if and only if it can be given a total order compatible with the monoid operation
[14, page 123]. Let R =

⊕
α∈ΓRα be a Γ-graded integral domain. That is,

deg(x) = α for each 0 6= x ∈ Rα and deg(0) = 0, and thus each nonzero
f ∈ R can be written uniquely as f = xα1

+ · · ·+ xαn
with deg(xαi

) = αi and
α1 < · · · < αn. A nonzero x ∈ Rα for all α ∈ Γ is said to be homogeneous,
and so if H =

⋃
α∈Γ(Rα \ {0}), then H is the saturated multiplicative set

of nonzero homogeneous elements of R. Then RH =
⊕

α∈〈Γ〉(RH)α, called

the homogeneous quotient field of R, is a 〈Γ〉-graded integral domain whose
nonzero homogeneous elements are units. An integral ideal I of R is said to be
homogeneous if I =

⊕
α∈Γ(I ∩ Rα). A fractional ideal I of R is homogeneous

if sI is an integral homogeneous ideal of R for some s ∈ H (thus I ⊆ RH).
An overring T of R, with R ⊆ T ⊆ RH will be called a homogeneous overring
if T =

⊕
α∈〈Γ〉(T ∩ (RH)α). Thus T is a (〈Γ〉-)graded integral domain with

Tα = T ∩ (RH)α for all α ∈ 〈Γ〉. For more on graded integral domains and
their divisibility properties (see [1], [14]).

Let D be an integral domain with quotient field K. Let F(D) denote the
set of all nonzero D-submodules of K, F(D) be the set of all nonzero fractional
ideals ofD, and f(D) be the set of all nonzero finitely generated fractional ideals
of D. Obviously, f(D) ⊆ F(D) ⊆ F(D). As in [15], a semistar operation on D
is a map ? : F(D)→ F(D), E 7→ E?, such that, for all 0 6= x ∈ K, and for all
E,F ∈ F(D), the following properties hold: (?1) (xE)? = xE?; (?2): E ⊆ F
implies that E? ⊆ F ?; (?3) E ⊆ E?; and (?4) E?? := (E?)? = E?.

A semistar operation ? is called a (semi)star operation on D, if D? = D. Let
? be a semistar operation on D. For every E ∈ F(D), put E?f :=

⋃
F ?, where

the union is taken over all F ∈ f(D) with F ⊆ E. It is easy to see that ?f is a
semistar operation on D. We say that a nonzero ideal I of D is a quasi-?-ideal
of D, if I?∩D = I; a quasi-?-prime (ideal of D), if I is a prime quasi-?-ideal of
D; and a quasi-?-maximal (ideal of D), if I is maximal in the set of all proper
quasi-?-ideals of D. Each quasi-?-maximal ideal is a prime ideal. It is shown
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in [7, Lemma 4.20] that if D? 6= K, then each proper quasi-?f -ideal of D is
contained in a quasi-?f -maximal ideal of D. We denote by QMax?(D) (resp.,
QSpec?(D)) the set of all quasi-?-maximal ideals (resp., quasi-?-prime ideals)
of D.

Given a semistar operation ? on D, it is possible to construct a semis-
tar operation ?̃, which is defined as follows, for each E ∈ F(D), E?̃ :=⋂
P∈QMax?f (D)EDP .

The most widely studied (semi)star operations on D have been the identity
dD, vD, tD := (vD)f , and wD := ṽD operations, where AvD := (A−1)−1, with
A−1 := (D : A) := {x ∈ K |xA ⊆ D}. We usually use these operations without
subscripts. If ? is a (semi)star operation on D, then d ≤ ? ≤ v.

Let ? be a semistar operation on a graded integral domain R =
⊕

α∈ΓRα.
We say that ? is homogeneous preserving if ? sends homogeneous fractional
ideals to homogeneous ones. It is known that d, t, and v are homogeneous pre-
serving [1, Proposition 2.5], ?̃ is homogeneous preserving [16, Proposition 2.3],
and that if ? is homogeneous preserving, then so is ?f [16, Lemma 2.4]. Denote
by h-QSpec?(R) the homogeneous ideals of QSpec?(R) and let h-QMax?(R)
denote the set of ideals of R which are maximal in the set of all proper homo-
geneous quasi-?-ideals of R (if ? is a (semi)star operation we denote these sets
by h-Spec?(R) and h-Max?(R) respectively). It is shown that if R? ( RH
and ? = ?f homogeneous preserving, then h-QMax?f (R)(⊆ h-QSpec?(R))
is nonempty, each proper homogeneous quasi-?f -ideal is contained in a ho-
mogeneous maximal quasi-?f -ideal [16, Lemma 2.1], and h-QMax?f (R) = h-

QMax?̃(R) [16, Proposition 2.5].

2. Graded primitive extension

Let R =
⊕

α∈ΓRα be a graded integral domain with quotient field qf(R),
H be the set of nonzero homogeneous elements of R, and ? be a semistar
operation on R such that R? ( RH . In this section we give a characterization
of gr-?-quasi-Prüfer domains in terms of graded semistar primitive extensions.

For a ∈ R, denote by C(a) the ideal of R generated by homogeneous com-
ponents of a. The homogeneous content ideal for a polynomial f = a0 +a1X+
· · ·+ anX

n ∈ R[X], is defined by Af := ARf :=
∑n
i=0 C(ai) [17]. It can be seen

that if R has trivial grading, i.e., Γ = {0}, then Af coincides with the usual
content ideal of f (that is the ideal generated by coefficients of f). Assume that
L is a fractional ideal of R[X] such that L ⊆ RH [X], and set AL :=

∑
f∈LAf .

Now assume that R ⊆ T is an extension of graded integral domains such that
each homogeneous element of R is a homogeneous element of T . We say that
an element u ∈ T is gr-?-primitive over R if u is a root of a nonzero polyno-
mial g ∈ R[X] with (ARg )? = R?. The extension R ⊆ T of graded integral
domains is called a gr-?-primitive extension if each homogeneous element of T
is gr-?-primitive over R. We call the extension R ⊆ T a gr-primitive exten-
sion if R ⊆ T is a gr-dR-primitive extension. It is clear that if R and T have
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trivial grading, then gr-primitive extension coincides with the usual primitive
extension of Gilmer and Hoffmann [10].

Recall that R is said to be a graded-Prüfer domain if each nonzero finitely
generated homogeneous ideal of R is invertible [2]. We say that R is a graded
valuation domain (gr-valuation domain) if either u ∈ R or u−1 ∈ R for every
nonzero homogeneous u ∈ RH .

Proposition 2.1 ([16, Theorem 4.4]). Let R =
⊕

α∈ΓRα be a graded integral
domain. Then the following statements are equivalent.

(1) R is a graded-Prüfer domain.
(2) RP is a valuation domain for all P ∈ h-Spec(R) (resp., P ∈ h-Max(R)).
(3) RH\P is a gr-valuation domain for all P ∈ h-Spec(R) (resp., P ∈ h-

Max(R)).

Proposition 2.2. Let R =
⊕

α∈ΓRα be an integrally closed graded domain.
Then R is a graded-Prüfer domain if and only if RH is a gr-primitive extension
of R.

Proof. Assume that R is a graded-Prüfer domain and let u = a/b ∈ RH be a
nonzero homogeneous element, where a, b ∈ H. Then there exists an integer
n > 1 such that an−1b ∈ (an, bn) by [16, Theorem 4.1]. It follows that an−1b =
r1a

n + r2b
n for some r1, r2 ∈ R; dividing both sides of this equation by bn

yields f(X) = r1X
n −Xn−1 + r2 ∈ R[X] with f(u) = 0 and Af = R, so u is

gr-primitive over R.
Conversely, suppose that RH is a gr-primitive extension of R. Let M be a

homogeneous maximal ideal of R and u be a nonzero homogeneous element of
RH . Then there exists a polynomial f in R[X] such that f(u) = 0 and Af = R.
Since M is homogeneous, one has f /∈ M [X]. It follows from [19, Lemma in
Page 19], that u or u−1 is in RM . Thus u or u−1 is in RH\M . Consequently
RH\M is a gr-valuation domain and hence R is a graded-Prüfer domain by
Proposition 2.1. �

Let N := {f ∈ R[X] | f 6= 0 and Af = R}; then N is a multiplica-
tively closed subset of R[X], and set NA(R) := R[X]N . It is known that
N = R[X]\

⋃
{P [X] | P ∈ h- Max(R)} and Max(NA(R)) = {P NA(R) | P ∈

h- Max(R)} [17, Proposition 2.3].
The integral closure of R is denoted by R̄. Then R̄ is a homogeneous overring

of R (cf. [13, Theorem 2.10]).

Remark 2.3. It is shown in the proof of part (2) ⇒ (7) of [11, Theorem 2.9]
that R̄[X]N = NA(R̄), where N = R[X]\

⋃
{M [X] |M ∈ h-Max(R)}.

Lemma 2.4. Let R =
⊕

α∈ΓRα be a graded integral domain. If RH is a

gr-primitive extension of R̄, then RH is a gr-primitive extension of R.

Proof. Let u ∈ RH , Q′ = {f ∈ R̄[X] | f(u) = 0}, and set Q = Q′ ∩ R[X]. If
N = R[X]\

⋃
{M [X] | M ∈ h-Max(R)} and N ′ = R̄[X]\

⋃
{M ′[X] | M ′ ∈ h-

Max(R̄)}, then NA(R) = R[X]N and NA(R̄) = R̄[X]N ′ . The hypothesis that
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RH is a gr-primitive extension of R̄ implies that Q′∩N ′ 6= ∅. It suffices to show
that Q∩N 6= ∅. We first observe that QNA(R) = Q′R̄[X]N ∩NA(R). That the
right side contains the left side is clear, and if f/n = d/m ∈ Q′R̄[X]N ∩NA(R),
where f ∈ Q′, d ∈ R[X], and n,m ∈ N , then fm = dn ∈ Q′ ∩ R[X] = Q,
so that f/n = fm/nm ∈ QNA(R). Thus Q′R̄[X]N ∩ NA(R) ⊆ QNA(R). It
follows from Remark 2.3, that NA(R̄) = R̄[X]N ; hence

QNA(R) = Q′R̄[X]N ∩NA(R) = Q′NA(R̄) ∩NA(R)

= NA(R̄) ∩NA(R) = NA(R),

which means that Q ∩N 6= ∅. �

Gilmer and Hoffmann characterized Prüfer domains as those integrally closed
domains D, such that every extension of D inside its quotient field is a primitive
extension [10, Theorem 2].

Theorem 2.5. Let R =
⊕

α∈ΓRα be a graded integral domain. Then R is a
gr-quasi-Prüfer domain if and only if RH is a gr-primitive extension of R.

Proof. Suppose that RH is a gr-primitive extension of R. Then RH is a gr-
primitive extension of R̄. Therefore by Proposition 2.2, R̄ is a graded-Prüfer
domain and hence R is a gr-quasi-Prüfer domain by [11, Corollary 2.10]. Con-
versely, if R is a gr-quasi-Prüfer domain, then R̄ is a graded-Prüfer domain
([11, Corollary 2.10]). Then by Proposition 2.2, RH is a gr-primitive extension
of R̄ and hence, by Lemma 2.4, RH is a gr-primitive extension of R. �

The following is the main result of this section.

Theorem 2.6. Let ? be a homogeneous preserving semistar operation on a
graded integral domain R =

⊕
α∈ΓRα such that R?  RH . Then the following

statements are equivalent:

(1) R ⊆ RH is a gr-?f -primitive extension.
(2) RH\P ⊆ RH is a gr-primitive extension for each P ∈ h-QSpec?f (R).
(3) RP is a quasi-Prüfer domain, for each P ∈ h-QSpec?f (R).
(4) RP ⊆ qf(R) is a primitive extension, for each P ∈ h-QSpec?f (R).
(5) R is a gr-?f -quasi-Prüfer domain.

Proof. (1) ⇒ (2) Let P ∈ h-QSpec?f (R) and let u be a nonzero homogeneous
element of RH . Then by assumption there is a polynomial 0 6= g ∈ R[X] such
that A?fg = R? and g(u) = 0. Clearly, g ∈ RH\P [X] and ARg * P . So

ARH\P
g = ARg RH\P = RH\P ,

and u is primitive over RH\P .
(2)⇒ (1) Let u be a nonzero homogeneous element of RH and let I be the

nonzero ideal of R[X] generated by polynomials f ∈ R[X] such that f(u) = 0.
We show that A?fI = R?. Since RH\P ⊆ RH is a gr-primitive extension for
each P ∈ h-QMax?f (R), there is a nonzero polynomial g ∈ RH\P [X], such
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that g(u) = 0 and ARH\P
g = RH\P . Let 0 6= s ∈ H\P with sg ∈ R[X]. Then

ARsg * P (otherwise, RH\P = sRH\P = sARH\P
g = ARH\P

sg = ARsgRH\P ⊆
PRH\P , a contradiction). Clearly, sg ∈ I and so AI * P for each P ∈ h-

QMax?f (R), therefore A?fI = R?. Hence we can find f ∈ I such that A?ff = R?

and f(u) = 0. So u is gr-?f -primitive over R.
(2)⇔ (3) For each P ∈ h-QSpec?f (R), RH\P ⊆ RH is a gr-primitive exten-

sion if and only if RH\P is a gr-quasi-Prüfer domain by Theorem 2.5, if and
only if RP is a quasi-Prüfer domain by [11, Theorem 2.9].

(5)⇔ (3) Follows from [11, Theorem 2.9].
(3)⇔ (4) Follows from [4, Theorem 1.1]. �

Corollary 2.7. Let R =
⊕

α∈ΓRα be a graded integral domain. Then the
following statements are equivalent:

(1) R ⊆ RH is a gr-primitive extension.
(2) RH\P ⊆ RH is a gr-primitive extension for each P ∈ h-Spec(R).
(3) RP ⊆ qf(R) is a primitive extension, for each P ∈ h-Spec(R).
(4) R is a gr-quasi-Prüfer domain.

Proof. Set ? = d in Theorem 2.6. �

Corollary 2.8. Let R =
⊕

α∈ΓRα be a graded integral domain. Then the
following statements are equivalent:

(1) R ⊆ RH is a gr-t-primitive extension.
(2) RH\P ⊆ RH is a gr-primitive extension for each P ∈ h-Spect(R).

(3) RP ⊆ qf(R) is a primitive extension, for each P ∈ h-Spect(R).
(4) R is a UMt-domain.

Proof. Follows from Theorem 2.6 by setting ? = v and [11, Theorem 3.2]. �

3. Graded INC-extension

Let R =
⊕

α∈ΓRα be a graded integral domain with quotient field qf(R),
H be the set of nonzero homogeneous elements of R, and ? be a semistar
operation on R such that R? ( RH . In this section we give a characterization
of gr-?-quasi-Prüfer domains in terms of graded semistar INC-extensions.

Assume that R ⊆ T is an extension of graded integral domains. We say that
T is a gr-?-INC-extension of R if wheneverQ1 andQ2 are nonzero homogeneous
prime ideals of T such that Q1 ∩ R = Q2 ∩ R and (Q1 ∩ R)?  R? then Q1

and Q2 are incomparable. We also say that R is a gr-?-INC-domain if each
homogeneous overring of R is a gr-?-INC-extension of R. We call R a gr-INC-
domain if it is a gr-dR-INC-domain. It is clear that if R has trivial grading,
then gr-INC extension coincides with the usual INC extension of Dobbs [6].

For an ideal I of R =
⊕

α∈ΓRα let Ih denote the ideal of R generated by
the set of homogeneous elements of R in I.
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Lemma 3.1. Let R ⊆ T ⊆ S ⊆ RH be such that T and S are homogeneous
overrings of a graded integral domain R =

⊕
α∈ΓRα.

(1) If R ⊆ T and T ⊆ S are gr-INC-extensions, then R ⊆ S is a gr-INC-
extension.

(2) If R ⊆ S is a gr-INC-extension and T ⊆ S is an integral extension, then
R ⊆ T is a gr-INC-extension.

(3) If R ⊆ S is a gr-INC-extension, then T ⊆ S is a gr-INC-extension.

Proof. (1) Assume that Q1 and Q2 are homogeneous prime ideals of S such
that Q1 ( Q2. Since T ⊆ S is a gr-INC-extension, then Q1∩T ( Q2∩T . Note
that Q1 ∩ T and Q2 ∩ T are homogeneous prime ideals of T . Since R ⊆ T is a
gr-INC-extension, then Q1 ∩ T ∩R ( Q2 ∩ T ∩R, i.e., Q1 ∩R ( Q2 ∩R.

(2) Assume that P1 and P2 are homogeneous prime ideals of T such that
P1 ( P2. Since T ⊆ S is an integral extension, there are prime ideals Q1 ( Q2

of S such that Pi = Qi ∩ T for i = 1, 2 ([9, Corollary 11.6]). Since Pi is
homogeneous,

Pi = (Pi)h = (Qi ∩ T )h = (Qi)h ∩ T
for i = 1, 2 ([11, Lemma 2.7]). Hence we may assume that Qi is homogeneous
for i = 1, 2. Since R ⊆ S is a gr-INC-extension, then Q1 ∩R ( Q2 ∩R and so

P1 ∩R = Q1 ∩ T ∩R = Q1 ∩R ( Q2 ∩R = Q2 ∩ T ∩R = P2 ∩R.
(3) Assume that Q1 and Q2 are homogeneous prime ideals of S such that

Q1 ( Q2. Since R ⊆ S is a gr-INC-extension, we have Q1 ∩R ( Q2 ∩R. Now
if Q1 ∩ T = Q2 ∩ T , then Q1 ∩R = Q2 ∩R a contradiction. �

Recall that Ayache and Jaballah introduced the residually algebraic exten-
sion of integral domains and characterized quasi-Prüfer domains as those do-
mains D, such that every extension of D inside its quotient field is a residually
algebraic extension [3, Corollary 2.8].

The extension R ⊆ T of graded integral domains is called a gr-residually
algebraic extension, if for each homogeneous prime ideal Q of T , T/Q is alge-
braic over R/(Q ∩R), equivalently qf(R/(Q ∩R)) ↪→ qf(T/Q) is an algebraic
extension. We say that R is a gr-residually algebraic domain if each homo-
geneous overring of R is a gr-residually algebraic extension of R. Recall that
if I =

⊕
α∈Γ Iα is a homogeneous ideal of a graded ring T =

⊕
α∈Γ Tα, then

T/I is a Γ-graded ring such that for each α ∈ Γ, (T/I)α = (Tα + I)/I ∼=
Tα/(Tα ∩ I) = Tα/Iα.

The following lemma is the graded version of [3, Theorem 2.3].

Lemma 3.2. Let R =
⊕

α∈ΓRα be a graded integral domain. Then R is a
gr-residually algebraic domain if and only if it is a gr-INC-domain.

Proof. Assume that R is a gr-residually algebraic domain which is not a gr-
INC-domain. So there exists a homogeneous overring T of R such that R ⊆ T
is not a gr-INC-extension. Let Q1 and Q2 be homogeneous prime ideals of T
such that P := Q1 ∩ R = Q2 ∩ R and Q1 ( Q2. Moreover, R/P ⊆ T/Q1 is
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an algebraic extension of domains, although Q2/Q1 is a nonzero ideal of T/Q1

that intersects R/P in 0, the desired contradiction.
Conversely, assume that R is a gr-INC-domain which is not a gr-residually

algebraic domain. So there exists a homogeneous overring T of R such that
R ⊆ T is not a residually algebraic extension. Let Q be a homogeneous prime
ideal of T such that R/(Q∩R) ↪→ T/Q is not an algebraic extension. Therefore
there exists u ∈ T such that u + Q is a transcendental element of T/Q over
R/P , where P := Q ∩ R. Let u + Q =

∑n
i=1(ui + Q) be the decomposition

of u + Q to homogeneous components. Hence there is a uj + Q which is a
homogeneous transcendental element of T/Q (in fact if for each i, ui + Q is
algebraic over R/P , then u + Q is algebraic over R/P ). Note that uj is a
homogeneous element of T and hence R[uj ](= R0[H ∪{uj}]) is a homogeneous
overring of R. Set x = uj +Q and T1 = R[uj ] +Q. Then T1 is a homogeneous
overring of R and T1/Q ∼= (R/P )[x]. Let ℘ be the prime ideal of (R/P )[x]
generated by x. Then ℘ contracts to the zero ideal in R/P , and if Q1 is a
homogeneous prime of T1 minimal over ujT1 +Q, then Q ( Q1 and ℘ = Q1/Q.
It is easy to check that Q1 ∩ R = Q ∩ R = P . This contradicts the graded
incomparability of the extension R ⊆ T1. �

Lemma 3.3 (cf. [5, Lemma 10]). Let {Pλ} be a chain of homogeneous prime
ideals of a graded domain R =

⊕
α∈ΓRα. Then there is a gr-valuation overring

of R with a chain of homogeneous prime ideals that contract to {Pλ}.
Let R =

⊕
α∈ΓRα be a graded integral domain and T be a homogeneous

overring of R. We say that T is an h-flat overring of R if for each homogeneous
prime ideal Q of T , one has RQ∩R = TQ.

Lemma 3.4. Let R =
⊕

α∈ΓRα be a graded integral domain. Then R is a
graded-Prüfer domain if and only if each homogeneous overring of R is h-flat.

Proof. Suppose that R is a graded-Prüfer domain and T is a homogeneous
overring of R and let Q ∈ h-Spec(T ). Therefore RQ∩R ⊆ TQ is an inclusion
of valuation domains. By [9, Theorem 17.6], QTQ ⊆ (Q ∩R)RQ∩R ⊆ QTQ, so
RQ∩R = TQ.

Conversely, assume that each homogeneous overring of R is h-flat. Let P be
a homogeneous prime ideal of R. By Lemma 3.3, there exists a gr-valuation
overring (V,M) of R such that P = M ∩ R. Hence VM = RM∩R = RP is a
valuation domain. Thus R is a graded-Prüfer domain by Proposition 2.1. �

Corollary 3.5. If R is a graded-Prüfer domain, then it is a gr-INC-domain.

Proof. Let T be a homogeneous overring of R and Q1 and Q2 be homogeneous
prime ideals of T such that Q1 ( Q2. By Lemma 3.4, the map φ : h-Spec(T )→
h-Spec(R) which sends Q to Q∩R is injective. Therefore Q1∩R ( Q2∩R. �

Lemma 3.6. Let R =
⊕

α∈ΓRα be a graded integral domain. Then R is

a gr-residually algebraic domain if and only if R̄ is a gr-residually algebraic
domain.
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Proof. Since one implication is trivial, we will concentrate on the other. Let
T be a homogeneous overring of R. Since R̄ ⊆ T̄ ⊆ RH , then R̄ ⊆ T̄ is a
gr-residually algebraic extension by assumption. Moreover, R ⊆ R̄ is a gr-
residually algebraic extension, and thus R ⊆ T̄ is also a gr-residually algebraic
extension by Lemma 3.1(1), and Lemma 3.2. Hence R ⊆ T is a gr-residually
algebraic extension by Lemma 3.1(2), and Lemma 3.2. �

Proposition 3.7. Let R =
⊕

α∈ΓRα be an integrally closed graded domain.
If R is a gr-INC-domain, then R ⊆ RH is a gr-primitive extension.

Proof. Assume that R ⊆ RH is not a gr-primitive extension. So R is not a
graded-Prüfer domain by Proposition 2.2. Hence there exists P ∈ h-Max(R)
such that RP is not a valuation domain by Proposition 2.1. Thus there is a
homogeneous element u ∈ RH such that u /∈ RP and u−1 /∈ RP by [16, Lemma
4.3]. Consequently by [18, Theorem 7], PR[u] is a (non-maximal) prime ideal of
R[u], P = PR[u] ∩R and R[u]/PR[u] ∼= (R/P )[X]. Since u is a homogeneous
element of RH , R[u] is a homogeneous overring of R. Thus R ⊆ R[u] is a
gr-residually algebraic extension by Lemma 3.2. Hence

R/P ↪→ R[u]/PR[u] ∼= (R/P )[X]

is an algebraic extension, a contradiction. �

The following theorem is the graded version of [6, Theorem].

Theorem 3.8. Let R =
⊕

α∈ΓRα be a graded integral domain. Then R is a
gr-INC-domain if and only if R ⊆ RH is a gr-primitive extension.

Proof. Assume that R is a gr-INC-domain. Let T be a homogeneous overring
of R̄. Thus R ⊆ T is a gr-INC-extension which implies that R̄ ⊆ T is a gr-INC-
extension by Lemma 3.1(3). Therefore R̄ is an integrally closed gr-INC-domain,
hence R̄ ⊆ RH is a gr-primitive extension by Proposition 3.7. Now R ⊆ RH is
a gr-primitive extension by Lemma 2.4.

Conversely, assume that R ⊆ RH is a gr-primitive extension. Then by the
proof of Theorem 2.5, R̄ is a graded-Prüfer domain. So R̄ is a gr-INC-domain
by Corollary 3.5. Thus R̄ is a gr-residually algebraic domain by Lemma 3.2.
Therefore R is a gr-residually algebraic domain by Lemma 3.6, and hence R is
a gr-INC-domain by Lemma 3.2. �

Corollary 3.9. Let R =
⊕

α∈ΓRα be a graded integral domain. Then the
following statements are equivalent:

(1) R is a gr-quasi-Prüfer domain.
(2) R is a gr-residually algebraic domain.

Proof. It follows by combining Corollary 2.7, Theorem 3.8 and Lemma 3.2. �

The following is the main result of this section.
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Theorem 3.10. Let ? be a homogeneous preserving semistar operation on a
graded integral domain R =

⊕
α∈ΓRα such that R?  RH . Then the following

statements are equivalent:

(1) R is a gr-?f -INC-domain.
(2) RH\P is a gr-INC-domain, for each P ∈ h-QSpec?f (R).
(3) RP is a quasi-Prüfer domain, for each P ∈ h-QSpec?f (R).
(4) RP is an INC-domain, for each P ∈ h-QSpec?f (R).
(5) R is a gr-?f -quasi-Prüfer domain.

Proof. (1)⇒ (2) Let P ∈ h-QSpec?f (R) and let T be a homogeneous overring
of RH\P . Assume that Q1 and Q2 are homogeneous prime ideals of T such that
Q1 ∩ RH\P = Q2 ∩ RH\P . We must show that Q1 and Q2 are incomparable.
By assumption, T is a gr-?f -INC-extension of R and Q1 ∩ R = Q2 ∩ R ⊆ P
with P ?f ( R?, hence Q1 and Q2 are incomparable.

(2) ⇒ (1) Let T be a homogeneous overring of R and Q1  Q2 be homo-
geneous prime ideals of T such that P := Q1 ∩ R = Q2 ∩ R ⊆ M for some
M ∈ h-QSpec?f (R). Note that Q1TH\M ( Q2TH\M and they are prime ideals
of TH\M each of which intersects RH\M in PRH\M , and so RH\M ⊆ TH\M is
not a gr-INC-extension, contradicting (2).

(2)⇔ (3) RH\P is a gr-INC-domain for each P ∈ h-QSpec?f (R) if and only
if RH\P ⊆ RH is a gr-primitive extension by Theorem 3.8, if and only if RP is
a quasi-Prüfer domain, for each P ∈ h-QSpec?f (R) by Theorem 2.6.

(3) ⇔ (4) and (3) ⇔ (5) Follow from [4, Theorem 1.1] and [11, Theorem
2.9], respectively. �

Corollary 3.11. Let R =
⊕

α∈ΓRα be a graded integral domain. Then the
following statements are equivalent:

(1) R is a gr-INC-domain.
(2) RH\P is a gr-INC-domain, for each P ∈ h-Spec(R).
(3) RP is an INC-domain, for each P ∈ h-Spec(R).
(4) R is a gr-quasi-Prüfer domain.

Proof. Set ? = d in Theorem 3.10. �

Corollary 3.12. Let R =
⊕

α∈ΓRα be a graded integral domain. Then the
following statements are equivalent:

(1) R is a gr-t-INC-domain.
(2) RH\P is a gr-INC-domain, for each P ∈ h-Spect(R).

(3) RP is an INC-domain, for each P ∈ h-Spect(R).
(4) R is a UMt-domain.

Proof. Follows from Theorem 3.10 by setting ? = v and [11, Theorem 3.2]. �
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