• Title/Summary/Keyword: (Ba,Sr)TiO$_3$ thin films

Search Result 188, Processing Time 0.032 seconds

The Etching Characteristics of (Ba, Sr) $TiO_3$Thin Films Using Magnetically Enhanced Inductively Coupled Plasma (자장강화된 유도결합 플라즈마를 이용한 (Ba, Sr) $TiO_3$박막의 식각 특성 연구)

  • 민병준;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.996-1002
    • /
    • 2000
  • Ferroelectric (Ba, Sr) TiO$_3$(BST) thin films have attracted much attention for use in new capacitor materials of dynamic random access memories (DRAMs). In order to apply BST to the DRAMs, the etching process for BST thin film with high etch rate and vertical profile must be developed. However, the former studies have the problem of low etch rate. In this study, in order to increase the etch rate, BST thin films were etched with a magnetically enhanced inductively coupled plasma(MEICP) that have much higher plasma density than RIE (reactive ion etching) and ICP (inductively coupled plasma). Experiment was done by varying the etching parameters such as CF$_4$/(CF$_4$+Ar) gas mixing ratio, rf power, dc bias voltage and chamber pressure. The maximum etch rate of the BST films was 170nm/min under CF$_4$/CF$_4$+Ar) of 0.1, 600 W/-350 V and 5 mTorr. The selectivities of BST to Pt and PR were 0.6 and 0.7, respectively. Chemical reaction and residue of the etched surface were investigated with X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS).

  • PDF

Microstructural Investigation of $Ba_{0.7}Sr_{0.3}TiO_3$ (BST) Thin Films on Various Electrodes and Buffers

  • Seokmin Hong;Rhim, Sung-Min;Heungjin Bak;Ilsin An;Kim, Ok-Kyung
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.333-338
    • /
    • 2000
  • $Ba_{0.7}Sr_{0.3}TiO_3$(BST) thin films were deposited simultaneously on various electrodes and buffers by the sputtering technique. When the substrate temperature was varied, the BST thin film on each electrode showed good crystallinity above $550^{\circ}C$ as revealed by X-ray diffraction measurements. The surface morphology, determined by atomic force microscopy, indicated that the roughness of BST thin films on $RuO_2$was substrate dependent. However, BST thin films on Ru electrodes are smoother and showed no substrate dependence, probably because the precursor surface diffusion length was greater than the sinusoidal perturbations of the wavelength.

  • PDF

Study on Damage Reduction of (Ba0.6Sr0.4)TiO3 Thin Films in Ar/CF4 Plasma (Ar/CF4 유도결합 플라즈마에서 식각된 (Ba0.6Sr0.4)TiO3 박막의 손상 감소)

  • 강필승;김경태;김동표;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.460-464
    • /
    • 2003
  • The barium strontium titannate ((Ba,Sr)TiO$_3$:BST) thin films were etched in an inductively coupled plasma (ICP) as a function of CF$_4$/Ar gas mixing ratio. Under CF$_4$(20%)/Ar(80%), the maximum etch rate of the BST films was 400 $\AA$/min. Etching products were redeposited on the surface of BST and then the nature of crystallinity were varied. Therefore, we investigated the etched surface of BST by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The plasma damages were evaluated in terms of leakage current density by Agilent 4145C and dielectric constant by HP 4192 impedance analyzer. After the BST thin films exposed in the plasma, the leakage current density and roughness increases. After annealing at 600 $^{\circ}C$ for 10 min in $O_2$ ambient, the leakage current density, roughness and nonvolatile etch byproducts reduced. From this results, the plasma induced damages were recovered by annealing process owing to the relaxation of lattice mismatches by Ar ions and the desorption of metal fluorides in high temperature.

Electrical Properties of $Ba_{1-x}Sr_xTiO_3$ Thin Films Deposited by Metalorganic Chemical Vapor Deposition

  • Yoon, Jong-Guk;Yoon, Soon-Gil;Lee, Won-Jea
    • The Korean Journal of Ceramics
    • /
    • v.1 no.4
    • /
    • pp.204-208
    • /
    • 1995
  • The microstructure and electrical propetries were investigated for polycrystalline $Ba^{1-x}Sr_xTiO_3$(BST) thin films deposited on Pt/Ti/$SiO_2$(PTSS) and Pt/MgO(PM) substrates by metalorganic chemical vapor deposition (MOCVD). BST films on PTSS have coulmnar and porous structures, while on PM have an equiaxied and dense structure. The dielectric constant and a dissipation factor of BST films on PTSS and 20 fC/$\mu \textrm{cm}^3$ on PTSS and 12fC/$\mu \textrm{cm}^2$ on PM was obtained at an applied electric field of 0.06 MV/cm. Leakage current density of BST films on PM was smaller than that on PTSS. The leakage current density level was about $8\times10^{-8}A/\textrm{cm}^2$ at 0.04MV/cm.

  • PDF