• Title/Summary/Keyword: (A, $\eta$) maximal monotone mapping

Search Result 3, Processing Time 0.016 seconds

GENERAL FRAMEWORK FOR PROXIMAL POINT ALGORITHMS ON (A, η)-MAXIMAL MONOTONICIT FOR NONLINEAR VARIATIONAL INCLUSIONS

  • Verma, Ram U.
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.685-693
    • /
    • 2011
  • General framework for proximal point algorithms based on the notion of (A, ${\eta}$)-maximal monotonicity (also referred to as (A, ${\eta}$)-monotonicity in literature) is developed. Linear convergence analysis for this class of algorithms to the context of solving a general class of nonlinear variational inclusion problems is successfully achieved along with some results on the generalized resolvent corresponding to (A, ${\eta}$)-monotonicity. The obtained results generalize and unify a wide range of investigations readily available in literature.

ON NONLINEAR VARIATIONAL INCLUSIONS WITH ($A,{\eta}$)-MONOTONE MAPPINGS

  • Hao, Yan
    • East Asian mathematical journal
    • /
    • v.25 no.2
    • /
    • pp.159-169
    • /
    • 2009
  • In this paper, we introduce a generalized system of nonlinear relaxed co-coercive variational inclusions involving (A, ${\eta}$)-monotone map-pings in the framework of Hilbert spaces. Based on the generalized resol-vent operator technique associated with (A, ${\eta}$)-monotonicity, we consider the approximation solvability of solutions to the generalized system. Since (A, ${\eta}$)-monotonicity generalizes A-monotonicity and H-monotonicity, The results presented this paper improve and extend the corresponding results announced by many others.

PROXIMAL POINT ALGORITHMS BASED ON THE (A, 𝜂)-MONOTONE MAPPINGS

  • Qin, Xiaolong;Shang, Meijuan;Yuan, Qing
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.147-155
    • /
    • 2008
  • In this paper, we consider proximal point algorithms based on ($A,{\eta}$)-monotone mappings in the framework of Hilbert spaces. Since ($A,{\eta}$)-monotone mappings generalize A-monotone mappings, H-monotone mappings and many other mappings, our results improve and extend the recent ones announced by [R.U. Verma, Rockafellars celebrated theorem based on A-maximal monotonicity design, Appl. Math. Lett. 21 (2008), 355-360] and [ R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877-898] and some others.

  • PDF