• Title/Summary/Keyword: (3, 2)-fuzzy set

Search Result 78, Processing Time 0.036 seconds

3D Graphics Library for Generating Real-time Special Effects

  • Kim Eung-Kon;Yoo Bong-Kil;Song Seung-Heon
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.172-176
    • /
    • 2004
  • In special effects industry there is a high demand to convincingly mimic the appearance and behavior of natural phenomena such as smoke, waterfall, rain, and fire. Particle systems are methods adequate for modeling fuzzy objects of natural phenomena. This paper presents particle system graphics library for generating special effects in video games and virtual reality applications. The library is a set of functions that allow c++ programs to simulate the dynamics of particles for special effects in interactive and non-interactive graphics applications, not for scientific simulation.

Memory Organization for a Fuzzy Controller.

  • Jee, K.D.S.;Poluzzi, R.;Russo, B.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1041-1043
    • /
    • 1993
  • Fuzzy logic based Control Theory has gained much interest in the industrial world, thanks to its ability to formalize and solve in a very natural way many problems that are very difficult to quantify at an analytical level. This paper shows a solution for treating membership function inside hardware circuits. The proposed hardware structure optimizes the memoried size by using particular form of the vectorial representation. The process of memorizing fuzzy sets, i.e. their membership function, has always been one of the more problematic issues for the hardware implementation, due to the quite large memory space that is needed. To simplify such an implementation, it is commonly [1,2,8,9,10,11] used to limit the membership functions either to those having triangular or trapezoidal shape, or pre-definite shape. These kinds of functions are able to cover a large spectrum of applications with a limited usage of memory, since they can be memorized by specifying very few parameters ( ight, base, critical points, etc.). This however results in a loss of computational power due to computation on the medium points. A solution to this problem is obtained by discretizing the universe of discourse U, i.e. by fixing a finite number of points and memorizing the value of the membership functions on such points [3,10,14,15]. Such a solution provides a satisfying computational speed, a very high precision of definitions and gives the users the opportunity to choose membership functions of any shape. However, a significant memory waste can as well be registered. It is indeed possible that for each of the given fuzzy sets many elements of the universe of discourse have a membership value equal to zero. It has also been noticed that almost in all cases common points among fuzzy sets, i.e. points with non null membership values are very few. More specifically, in many applications, for each element u of U, there exists at most three fuzzy sets for which the membership value is ot null [3,5,6,7,12,13]. Our proposal is based on such hypotheses. Moreover, we use a technique that even though it does not restrict the shapes of membership functions, it reduces strongly the computational time for the membership values and optimizes the function memorization. In figure 1 it is represented a term set whose characteristics are common for fuzzy controllers and to which we will refer in the following. The above term set has a universe of discourse with 128 elements (so to have a good resolution), 8 fuzzy sets that describe the term set, 32 levels of discretization for the membership values. Clearly, the number of bits necessary for the given specifications are 5 for 32 truth levels, 3 for 8 membership functions and 7 for 128 levels of resolution. The memory depth is given by the dimension of the universe of the discourse (128 in our case) and it will be represented by the memory rows. The length of a world of memory is defined by: Length = nem (dm(m)+dm(fm) Where: fm is the maximum number of non null values in every element of the universe of the discourse, dm(m) is the dimension of the values of the membership function m, dm(fm) is the dimension of the word to represent the index of the highest membership function. In our case then Length=24. The memory dimension is therefore 128*24 bits. If we had chosen to memorize all values of the membership functions we would have needed to memorize on each memory row the membership value of each element. Fuzzy sets word dimension is 8*5 bits. Therefore, the dimension of the memory would have been 128*40 bits. Coherently with our hypothesis, in fig. 1 each element of universe of the discourse has a non null membership value on at most three fuzzy sets. Focusing on the elements 32,64,96 of the universe of discourse, they will be memorized as follows: The computation of the rule weights is done by comparing those bits that represent the index of the membership function, with the word of the program memor . The output bus of the Program Memory (μCOD), is given as input a comparator (Combinatory Net). If the index is equal to the bus value then one of the non null weight derives from the rule and it is produced as output, otherwise the output is zero (fig. 2). It is clear, that the memory dimension of the antecedent is in this way reduced since only non null values are memorized. Moreover, the time performance of the system is equivalent to the performance of a system using vectorial memorization of all weights. The dimensioning of the word is influenced by some parameters of the input variable. The most important parameter is the maximum number membership functions (nfm) having a non null value in each element of the universe of discourse. From our study in the field of fuzzy system, we see that typically nfm 3 and there are at most 16 membership function. At any rate, such a value can be increased up to the physical dimensional limit of the antecedent memory. A less important role n the optimization process of the word dimension is played by the number of membership functions defined for each linguistic term. The table below shows the request word dimension as a function of such parameters and compares our proposed method with the method of vectorial memorization[10]. Summing up, the characteristics of our method are: Users are not restricted to membership functions with specific shapes. The number of the fuzzy sets and the resolution of the vertical axis have a very small influence in increasing memory space. Weight computations are done by combinatorial network and therefore the time performance of the system is equivalent to the one of the vectorial method. The number of non null membership values on any element of the universe of discourse is limited. Such a constraint is usually non very restrictive since many controllers obtain a good precision with only three non null weights. The method here briefly described has been adopted by our group in the design of an optimized version of the coprocessor described in [10].

  • PDF

Intelligent Test Plan Metrics on Adaptive Use Case Approach

  • Kim, R. Young Chul;Lee, Jaehyub
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.70-77
    • /
    • 2002
  • This paper describes a design driven approach to drive intelligent test plan generation based on adaptive use case (3,5). Its foundation is an object-oriented software design approach which partitions design schema into design architecture of functional components called “design component”. A use case software development methodology of adaptive use case approach developed in I.I .T is employed which preserves this unit architecture on through to the actual code structure. Based on the partition design schema produced during the design phase of this methodology, a test plan is generated which includes a set of component and scenario based test. A software metric is introduced which produces an ordering of this set to enhance productivity and both promote and capitalize on test case reusability, This paper contains an application that illustrates the proposed approach.

A Study on Forecasting Accuracy Improvement of Case Based Reasoning Approach Using Fuzzy Relation (퍼지 관계를 활용한 사례기반추론 예측 정확성 향상에 관한 연구)

  • Lee, In-Ho;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.67-84
    • /
    • 2010
  • In terms of business, forecasting is a work of what is expected to happen in the future to make managerial decisions and plans. Therefore, the accurate forecasting is very important for major managerial decision making and is the basis for making various strategies of business. But it is very difficult to make an unbiased and consistent estimate because of uncertainty and complexity in the future business environment. That is why we should use scientific forecasting model to support business decision making, and make an effort to minimize the model's forecasting error which is difference between observation and estimator. Nevertheless, minimizing the error is not an easy task. Case-based reasoning is a problem solving method that utilizes the past similar case to solve the current problem. To build the successful case-based reasoning models, retrieving the case not only the most similar case but also the most relevant case is very important. To retrieve the similar and relevant case from past cases, the measurement of similarities between cases is an important key factor. Especially, if the cases contain symbolic data, it is more difficult to measure the distances. The purpose of this study is to improve the forecasting accuracy of case-based reasoning approach using fuzzy relation and composition. Especially, two methods are adopted to measure the similarity between cases containing symbolic data. One is to deduct the similarity matrix following binary logic(the judgment of sameness between two symbolic data), the other is to deduct the similarity matrix following fuzzy relation and composition. This study is conducted in the following order; data gathering and preprocessing, model building and analysis, validation analysis, conclusion. First, in the progress of data gathering and preprocessing we collect data set including categorical dependent variables. Also, the data set gathered is cross-section data and independent variables of the data set include several qualitative variables expressed symbolic data. The research data consists of many financial ratios and the corresponding bond ratings of Korean companies. The ratings we employ in this study cover all bonds rated by one of the bond rating agencies in Korea. Our total sample includes 1,816 companies whose commercial papers have been rated in the period 1997~2000. Credit grades are defined as outputs and classified into 5 rating categories(A1, A2, A3, B, C) according to credit levels. Second, in the progress of model building and analysis we deduct the similarity matrix following binary logic and fuzzy composition to measure the similarity between cases containing symbolic data. In this process, the used types of fuzzy composition are max-min, max-product, max-average. And then, the analysis is carried out by case-based reasoning approach with the deducted similarity matrix. Third, in the progress of validation analysis we verify the validation of model through McNemar test based on hit ratio. Finally, we draw a conclusion from the study. As a result, the similarity measuring method using fuzzy relation and composition shows good forecasting performance compared to the similarity measuring method using binary logic for similarity measurement between two symbolic data. But the results of the analysis are not statistically significant in forecasting performance among the types of fuzzy composition. The contributions of this study are as follows. We propose another methodology that fuzzy relation and fuzzy composition could be applied for the similarity measurement between two symbolic data. That is the most important factor to build case-based reasoning model.

A Reusability Measurement of the Reused Component by Employing Rough and Fuzzy Sets (러프와 퍼지 집합을 이용한 재사용 컴포넌트의 재사용도 측정)

  • Kim, Hye-Gyeong;Choe, Wan-Gyu;Lee, Seong-Ju
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2365-2372
    • /
    • 1999
  • The reusability measurement model should satisfy the following conditions : 1) can insert and delete metrics and components easily, 2) can compare and evaluate components quantitatively on the basis of validation, 3) don't require certain preassumed knowledge, and 4) can compute significance of each measurement attribute objectively. Therefore, in this paper, we propose a new reusability measurement model that can satisfy the above requirements. Our model selects the appropriate measurement attributes and calculates the relative significance of them by using rough set. Then, in order to measure the reusability of component, it integrates the significance of attributes and the measured value of them by using fuzzy integral. Finally, we apply our model to the reusability measurement of the function-oriented components and validate our model through statistical technique.

  • PDF

Fuzzy AHP and FCM-driven Hybrid Group Decision Support Mechanism (퍼지 AHP와 퍼지인식도 기반의 하이브리드 그룹 의사결정지원 메커니즘)

  • Kim, Jin-Sung;Lee, Kun-Chang
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2003.11a
    • /
    • pp.239-250
    • /
    • 2003
  • In this research, we propose a hybrid group decision support mechanism (H-GDSM) based on Fuzzy AHP (Analytic Hierarchy Process) and FCM (Fuzzy Cognitive Map). The AHP elicits a corresponding priority vector interpreting the preferred information among the decision makers. Corresponding vector was composed of the pairwise comparison values of a set of objects. Since pairwise comparison values are the judgments obtained from an appropriate semantic scale. However, AHP couldn't represent the causal relationship among information, which were used by decision makers. In contrast to AHP, FCM could represent the causal relationship among variables or information. Therefore, FCMs were successfully developed and used in several ill-structured domains, such as strategic decision-making, policy making, and simulations. Nonetheless, many researchers used subjective and voluntary inputs to simulate the FCM. As a result of subjective inputs, it couldn't avoid the rebukes of businessman. To overcome these limitations, we incorporated the Fuzzy membership functions, AHP and FCM into a H-GDSM. In contrast to current AHP methods and FCMs, the H-GDSM method developed herein could concurrently tackle the pairwise comparison involving causal relationships under a group decision-making environment. The strengths and contributions of our mechanism were 1) handling of qualitative knowledge and causal relationships, 2) extraction of objective input value to simulate the FCM, 3) multi-phase group decision support based on H-GDSM. To validate our proposed mechanism we developed a simple prototype system to support negotiation-based decisions in electronic commerce (EC).

  • PDF

Group Decision Making for New Professor Selection Using Fuzzy TOPSIS (퍼지 TOPSIS를 이용한 신임교수선택을 위한 집단의사결정)

  • Kim, Ki-Yoon;Yang, Dong-Gu
    • Journal of Digital Convergence
    • /
    • v.14 no.9
    • /
    • pp.229-239
    • /
    • 2016
  • The aim of this paper is to extend the TOPSIS(Technique for Order Performance by Similarity to Ideal Solution) to the fuzzy environment for solving the new professor selection problem in a university. In order to achieve the goal, the rating of each candidate and the weight of each criterion are described by linguistic terms which can be expressed in trapezoidal fuzzy numbers. In this paper, a vertex method is proposed to calculate the distance between two trapezoidal fuzzy numbers. According to the concept of the TOPSIS, a closeness coefficient is defined to determine the ranking order of all candidates. This research derived; 1) 4 evaluation criteria(research results, education and research competency, personality, major suitability) for new professor selection, 2) the 5 step procedure of the proposed fuzzy TOPSIS method for the group decision, 3) priorities of 4 candidates in the new professor selection case. The results of this paper will be useful to practical expert who is interested in analyzing fuzzy data and its multi-criteria decision-making tool for personal selection problem in personal management. Finally, the theoretical and practical implications of the findings were discussed and the directions for future research were suggested.

A Didactic Comparision between basic concept of the theory of Crisp Set and the theory of Fuzzy Set (보통집합과 퍼지집합의 교수학적 비교연구)

  • Ghil, Byung Moon
    • Journal of the Korean School Mathematics Society
    • /
    • v.3 no.1
    • /
    • pp.211-217
    • /
    • 2000
  • 본 논문의 목적은 G. Cantor 에 의하여 출발된 집합론을 보통집합 이론이라고 구별하여 부를 때, 보통 집합 이론이 그 바탕에 깔고 있는 논리적 제한 점들 곧, 배중률이라든지 모순의 법칙 등을 어떻게 보완할 수 있을 것인가\ulcorner 하는 점과 그러한 점을 보완하여야 할 필요성에 대하여도 생각하고자 한다. 그런 관점에서 보통집합 이론과 퍼지집합 이론의 기본개념을 상호 비교함으로써 앞서 제기한 문제의 보완 요소를 찾아보려고 한다. 실제에 있어 인간의 사고 가운데에서는 중간을 배제하는 일이 없음에도 불구하고 이를 수학적으로 접근하고 표현하는 수단이 부족함으로 인하여 부자연스러운 논리의 법칙을 받아들일 수밖에 없었던 것도 사실이다. 특히, 논리적 응용력이 부족한 중등과정의 학생들에게 있어서 수학이 전적으로 2가 논리에 의하여 지배되고 있다는 방식으로만 지도하는 것은 여러 가지 측면에서 그 내용의 보완이 요구된다. 보다 다양한 수학적 표현의 여지를 열어주는 지도법은 쉼없이 연구되어야 할 것이다. 무엇보다도 배우는 학생들이 보다 폭 넓은 사고의 영역을 소유하고, 그를 바탕으로 창의적이고 자유로운 발상이 이어 질 수 있도록 하기 위하여는 교사의 수학적 시야가 보다 넓고 유연해져야 한다함은 재론할 필요가 없을 것이다. 그런 의미에서 본 논문이 작은 역할을 할 수 있기를 바란다.

  • PDF

The Method to Build Knowledge-Base for User's Preference Retrieval (감성정보검색을 위한 지식베이스 구축방법)

  • Kim, Don-Han
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2008.10a
    • /
    • pp.5-8
    • /
    • 2008
  • This study proposed the Knowledge Base Building method reflecting the user's preferences based on the fuzzy set theory to develop information contents which support pedestrian's navigation. This research evaluated subject's preferences on the commercial spaces set to the hypothetical destination. Also it surveyed the causal relationship between the visual characteristics and the emotional characteristics to propose the methods of Navigation Knowledge Base (NKB). The NKB was composed by three elements; 1.the correlation model between emotional characteristics, 2.the causal relationship between visual characteristics and emotional characteristics, 3.the transformation model between visual characteristics and the physical characteristics.

  • PDF

L-pre-separation axioms in (2, L)-topologies based on complete residuated lattice-valued logic

  • Zeyada, Fathei M.;Abd-Allahand, M. Azab;Mousa, A.K.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.2
    • /
    • pp.115-127
    • /
    • 2009
  • In the present paper we introduce and study L-pre-$T_0$-, L-pre-$T_1$-, L-pre-$T_2$ (L-pre-Hausdorff)-, L-pre-$T_3$ (L-pre-regularity)-, L-pre-$T_4$ (L-pre-normality)-, L-pre-strong-$T_3$-, L-pre-strong-$T_4$-, L-pre-$R_0$-, L-pre-$R_1$-separation axioms in (2, L)-topologies where L is a complete residuated lattice.Sometimes we need more conditions on L such as the completely distributive law or that the "$\bigwedge$" is distributive over arbitrary joins or the double negation law as we illustrate through this paper. As applications of our work the corresponding results(see[1,2]) are generalized and new consequences are obtained.