172 Eung-Kon Kim, Bong-Kil Yoo and Seung-Heon Song : 3D Graphics Library for Generating Real-time Special Effects

3D Graphics Library for Generating Real-time
Special Effects

Eung-Kon Kim, Bong-Kil Yoo and Seung-Heon Song, Member, KIMICS

Abstract—In special effects industry there is a high
demand to convincingly mimic the appearance and behavior
of natural phenomena such as smoke, waterfall, rain, and
fire. Particle systems are methods adequate for modeling
fuzzy objects of natural phenomena.

This paper presents particle system graphics library
for generating special effects in video games and virtual
reality applications. The library is a set of functions that
allow C++ programs to simulate the dynamics of particles
for special effects in interactive and non-interactive
graphics applications, not for scientific simulation.

Index Terms—About four key words or phrases in
alphabetical order, separated by commas such as
Maritime, Information, Communication, Science etc. -

L INTRODUCTION

The modeling and animation of natural phenomena
has received much attention from the computer graphics
community. Synthetic of natural phenomena are required
for such diverse applications as flight simulators, special
effects, video games and other virtual realty.

Particle systems are a method for modeling fuzzy
objects such as fire, clouds, water, smoke, and so on.
Simulation of dynamic particle systems has been used in
computer animation for several years and has more
recently been used in real-time simulation and games to
enrich the visual appearance of the virtual worlds. A
particle system is composed of one or more individual
particles. Each of these particles has attributes that
directly or indirectly affect the behavior of the particle or
how and where the particle is rendered. The other common
characteristic of all particle systems is the introduction of
some type of random element. This random element can
be used to control the particle attributes such as position,
velocity and color{1,2,3].

Commercial animation packages such as Maya and 3D
Studio Max now include a particle animation package.
But they are rendered offline. OpenGL and DirectX are
application program interfaces necessary to potable interface
to the hardware implementations of graphics functionality,
but they support low-level operation of real-time rendering

Manuscript received September 10, 2004.

Eung-Kon Kim is with the Department of Computer Science,
Sunchon University, Suncheon-si, Korea.

Bong-Kil Yoo is with the Department of Cyber Police
Administration, Suncheon Cheongam College, Suncheon-si, Korea.

Seung-Heon Song is with the Graduate School of Computer
Science, Sunchon National University, Suncheon-si, Korea.

for particle system.

The goal of this paper is to develop particle system
graphics library module for modeling special effects such
as smoke, fire, explosions, rain, etc. The library can be
based on some existing code such as particle system
API[3]. The tasks would be then to integrate such code
into C++ especially with its rendering module (the
particles should be probably based on the shaders), and
further to define some higher-level way of controlling
the effects. Designer of the scene will be dealing with
fuzzy object primitives such as fire or smoke and their
parameters such as location, intensity, color etc., not directly
with equations describing underlying particle system.

The next chapter introduces particle system for special
effects, chapter 3 presents the particle system graphics
library for generating special effects, and finally chapter
4 concludes and discusses future works.

I1. PARTICLE SYSETM

A. Particle Generation

Particles are typically generated according to a controlled
stochastic process. For each frame, a random number of
particles are generated using some user-specified distribution
centered at the desired average number of particles per
frame(Eq. (1)). The distribution could be uniform or
Gaussian or anything else the animator wants. Rand()
returns a random number from -1.0 to +1.0 in the desired
distribution, and range scales it into the desired range. If
the particles are used to model a fuzzy object, then it is
best to use the area of the screen covered by the object to
control the number of particles generated(Eq. (2)). The
features of the random number generator, such as average
value and variance, can be a function of time to enable the
animator to have more control over the particle system[2].

of particles = average + Rand() - range (1)
of particles =

average + Rand() - range - screenArea (2)
B. Particle Attributes

The attributes of a particle determine its motion status,
its appearance, and its life in the particle system. Typical
attributes are position, velocity, shape parameters, color,
transparency and lifetime.

Each of attributes is initialized when the particle is
created. Again, to avoid uniformity, the user typically
randomizes values in some controlled way. The position
and velocity are updated according to the particle's
motion. The shape parameters, color. and transparency

International Journal of KIMICS, Vol. 2, No. 3, September 2004

173

control the particle's appearance. The lifetime attribute is
a count of how many frames the particle will exist in.

C. Particle Termination

At each new frame, each particle's lifetime attribute is
decremented by one. When the attribute reaches zero, the
particle is removed from the system. This completes the
particle's life cycle and can be used to keep the number
of particles active at any one time within some desired
range of values.

D. Particle Animation

Typically, each active particle in a particle system is
animated throughout its life. This activation includes not
only its position and velocity but also its display attributes:
shape, color, and transparency. To animate the particle's
position in space, the user considers forces and computes
the resultant particle acceleration.

The velocity of the particle is updated from its
acceleration, and then the average velocity is computed
and used to update the particle's position. Gravity, other
global force fields, local force fields, and collisions with
objects in the environment are typical forces modeled in
the environment.

The particle's color and transparency can be a function
of global time, its own life span remaining, its height,
and so on. The particle's shape can be a function of its
velocity. For example, an ellipsoid can be used to represent
a moving particle where the major axis of the ellipsoid is
aligned with the direction of travel and the ratio of the
ellipsoid's length to the radios of its circular cross section
is related to its speed[4,5,6].

E. Particle Rendering

To simplify rendering, model each particle as a point
light source so that it adds color to the pixel it covers but
is not involved in visible surface algorithms (except to be
hidden) or shadowing. In some application, shadowing
effects have been determined to be an important visual
cue. The density of particles between a position in space
and a light source can be used to estimate the amount of
shadowing[4].

E Particle System Representation
A vparticle is represented by a tuple [x,v,f;m] which
holds its position, velocity, force accumulator, and mass.

typedef particle_struct struct {
vector3D p;
vector3D v;
vector3D f;
float mass;
} particle;

The state of a particle, [x,v], will be updated by

[v,f/m] by the ODE(ordinary differential equation) solver.

The solver can be considered to be a black box to the
extent that the actual method used by the solver does not
have to be known.

A particle system is an array of particles with a time
variable: [*p,n,t].

typedef particleSystem_struct struct{
particle *p;
int n;
float t;
} particleSystem;

Typically, each particle will have a life span. The
particle data structure itself can be reused in the system
so that a particle system might have tens of thousands of
particles over the life of the simulation but only, for
example, one thousand in existence at any one time. Initial
values are set pseudo randomly so that particles are
spawned in a controlled manner but with some variability.

III. THE PARTICLE SYSTEM GRAPHICS
LIBRARY FOR GENERATING SPECIAL
EFFECTS

A. Characteristics of the Particle System Graphics

Library

The particle system library is a high level graphics
application interface that is based on OpenGL[7,8] graphics
library to generate special effects in games and virtual
reality applications. Figure 1 represents the applicability
and the scalability of the particle system library.

The library was designed with specific goals and
constraints.

Scafabkity g

Fig. 1 Applicability and Scalability of the Particle System
Library

The primary purpose of the library is to enable real-
time applications to include dynamics be computed
efficiently so that the CPU has enough time per frame to
perform the rest of the application's computation.

The library was specifically designed to allow the user
to create many effects not envisioned by the library
designers. For this reason, the library consists of simple
building blocks such as Gravity and Bounce.

Since the library consists of simple building blocks,
the design space for implementing a particular effect can
be quite large. It is clear which parameter of which
action in a particular effect should be modified for a
particular visual result.

The numerical accuracy of the simulation must be
scalable and modifiable by the application. The library is
usable for offline animation and for real-time special
effects in video games and virtual reality. The application

174 Eung-Kon Kim, Bong-Kil Yoo and Seung-Heon Song : 3D Graphics Library for Generating Real-time Special Effects

programmer is able to specify different accuracy needs
for different effects.

The library is an abstraction of the particle system
functionality. The application should work identically
whether the library is implemented entirely as a library
linked into the application, or as a thin layer that merely
communicates the particle dynamics instructions to the
graphics hardware or some other device.

A particle within the particle system library is an
object with a set of attributes very similar to those of
Reeves' original particle system[1]: position, velocity,
color, alpha, size, age, secondary position, and secondary
velocity. All attributes are three-vectors, except alpha
and age, which are scalars. The secondary position is
normally a destination position and is rarely used. The
secondary velocity normally stores the velocity from the
previous time step for computing particle orientations
from their instantaneous curvature. The three-vector size
is only a rendering attribute, like color. Its use is completely
application-dependent. For particle dynamics purposes,
particles are a unit point-mass[3].

B. The Particle System Library

The particle system library consists of four sets of
functions. These are particle group functions that operate
on and manage particle groups, particle attribute functions
that set the current state of the library, particle action
functions that act on particle groups, and particle action
list functions that create and operate on action lists[3].

Library function names take the form particleFunctionName.
Most calls are defined with default values for the lesser-
used arguments to simplify the application developer's
coding in the common case.

Particle attribute functions are used to set attributes of
particles to be created. The followings are principle particle
attribute functions.

void particleColor(...) //set the color of new particles
void particleSize(...) //set size of new particles
void particleInitialAge(...)

//set initial age of new particles

void particleTimeStep(...) //set time step length

void particleVelocity(...)

//set initial velocity of new particles

A particle group is a system of particles that are acted
on together. The following particle group functions create
and deal with particle group.

int particleCreateGroups(...) //create particle groups

void particleChangeGroup(...) //change a particle group
void particleDeleteGroups(...) //delete particle groups

void particleDrawGroup(...) //draw a particle group
int particleGetNumberParticles()

//get the number of particles in the current group

int particleChangetMaxParticles(...)

//change the maximum number of particles

Action functions directly manipulate particles in particle
groups. They perform effects such as gravity, explosions,

bouncing, etc. to all particles in the current particle group.

A program typically creates and initializes one or more
particle groups, then at run time it calls particle action
functions to animate the particles and finally draws the
group of particles on the screen.

void particleAccelerate(...)

//accelerate each particle toward each other particle
void particleAcceleration(...)

//accelerate particles in the specific direction

void particleAcceleratePoint(...)

//accelerate particles toward the specific point

void particleAccelerateRandom(...)

//accelerate particles in random directions

void particleAdd(...)

//add particles in the specific domain

void particleBounce(...)

//bounce particles off a domain of space

void particleChangeColor(...)

{/change color of all particles into the specific color
void particleChangeSize(...)

//change size of all particles into the specific size
void particleChangeVelocity(...)

//change velocity of all particles into the specific velocity
void particleDampen(...) //dampen particle velocities
void particleExplode(...) //explode

void particleJet(...)

/laccelerate particles near the center of the jet

void particleMove()

//move particle positions based on velocity

void particleRemove(...) //remove old particles
void particleRemoveOff(...)

/lremove particles with positions off the specific domain
void particleSwirl(...) //swirl particles around a vortex

Action lists are blocks of actions that are applied
together to a particle group. They are conceptually similar
to scripts or procedures. They can be also be thought of
as similar to display lists in OpenGL. An action list

. abstracts the specifics of a particular effect and allows

complex effects to be treated as primitives like actions.
The followings are principle particle action list functions.

void particleApplyActionListt(...)

//apply the action list to the particle group
void particleCreate ActionList(...)

//create the specific action list

void particleEndActionList()

/fend the creation of a new action list
void particleGenerateActionLists(...)
//generate empty action lists

void particleRemoveActionLists(...)
//Iremove consecutive action lists

C. Applications of the Particle System Graphics Library

Library functions are called to generate special effects.
Programmer of the scene will be dealing with fuzzy
object primitives such as explosion or waterfall and their
parameters such as location, intensity, color etc., not
directly with equations describing underlying particle
system. Figure 2 represents pseudo code for calls of
particle system library[3].

International Journal of KIMICS, Vol. 2, No. 3, September 2004

175

for each particle group i
particleChangeGroup(i) //change particle group
for each time step per frame
particleAdd(...)
//add particles in the specific domain
other actions.... //perform other actions

particleMove() //move particle positions
end for
particleDrawGroup(...) //draw particles

end for

//draw others

other drawing...

Fig. 2 Pseudo code for calls of particle system library

The following figure 3 and figure 4 represent the part of
C code and the execution screen to generate a waterfall
effect respectively.

void Waterfall(bool first time = true)
{ particleVelocityD(PDBIob, 0.1, 0, 0.1, 0.004);
//set initial velocity of new particles
particleColor(1.0,PDLine,0.8,0.9,1.0,1.0,1.0,1.0);
/lset the color of new particles
particleSize(1.5); //set size of new particles
particleInitial Age(0);
//set initial age of new particles

if(first_time)

/laction_handle
particleGenerate ActionLists(1);
//generate empty action lists
particleCreateActionList(action handle);
//create the specific action list

}
particleAdd(50, PDPoint, -4, 0, 6);

//add particles in the specific domain
particleAcceleration(0.0, 0.0, -0.01);

/faccelerate particles

//in the specific direction
particleRemove(250); //remove old particles
particleBounce(0, 0.01, 0, PDSphere, -1, 0, 4, 1);

//bounce particles off a domain of space
particleBounce(0,0.01,0, PDSphere, -2.5,0,2,1);
particteBounce(0,0.01,0, PDSphere, 0.7,-0.5,2,1);
particleBounce(-.01,0.35,0,PDPlane,0,0,0,0,0,1);
particleMove();

//move particle positions based on velocity
if(first_time)
pEndActionList();

//end the creation of a new action list

Fig. 3 The part of C code to generate a waterfall effect

Fig. 4 Execution screen of a waterfall effect using fig. 3

The following fig. 5 and fig. 6 represent the part of C
code and the execution screen to generate a moving lights
effect respectively.

void MovingLights(bool first_time = true)
particleSize(1.0); //set size of new particles
particleVelocity(PDPoint, 0,0,0);
//set initial velocity of new particles
particieColor(1.0, PDSphere, .5, 4, .1, .1);
//set the color of new particles
particlelnitial Age(0);
//set initial age of new particles
particleAdd(1, PDBlob, 0, 0, 2, 2);
//add particles in the specific domain
particleAccelerateRandom(PDSphere,0,0,0,0.02);
//accelerate particles in random directions
particieRemove(20); //remove old particles
particleMove(); }
//move particle positions based on velocity

Fig. 5 The part of C code to generate a moving lights effect

D. Performance

To measure numerical performance of the library,
20,000 points were simulated. Particles were rendered
using GL_POINTS in a 512x512 window. The 1.2 GHz
Pentium IV processor with Geforce 256 achieved 27.8fps

IV. CONCLUSIONS

This paper presents particle system graphics library
for generating special effects in video games and virtual
reality applications. The library is a set of functions that
allow C++ programs to simulate the dynamics of particles
for special effects in interactive and non-interactive graphics
applications, not for scientific simulation.

It is clear which parameter of which action in a
particular effect should be modified for a particular
visual result. The numerical accuracy of the simulation
must be scalable and modifiable by the application. The
library is usable for offline animation and for real-time
special effects in video games and virtual reality. The
application programmer is able to specify different accuracy
needs for different effects.

Programmer of the scene will be dealing with fuzzy
object primitives such as fire or smoke and their parameters

176 Eung-Kon Kim, Bong-Kil Yoo and Seung-Heon Song : 3D Graphics Library for Generating Real-time Special Effects

such as location, intensity, color etc., not directly with
equations describing underlying particle system.

Future work is to add library functions to generate
diverse effects and to apply them to games and virtual
reality applications.

ACKNOWLEDGMENTS

This work was supported in part by Research Foundation of
Engineering College, Sunchon National University and
University Research Program supported by Ministry of
Information & Communication in Republic of Korea

REFERENCES

[1] Reeves, W. T. “Particle Systems - A Technique for
Modeling A Class of Fuzzy Objects”. Proc. of
SIGGRAPH ’83, Detroit, Michigan, July, 1983.

[2] Rick Parent, Computer Animation, Algorithms and
Techniques, Morgan Kaufmann Publihers, 2002.

[3] McAllister, D. K. “The Design of an API for Particle
Systems” http://cs.unc.edu/~davemc/Particle, 1999.

[4] Reeves, W. T. and R. Blau “Approximate and
Probabilistic Algorithms for Shading and Rendering
Structured Particle Systems” Proc of SIGGRAPH 85,
San Francisco, California, July, 1985.

[5] Leech, J. P. and R. M. Taylor. “Interactive Modeling
Using Particle Systems”. Proc. of the 2nd Conference
on Discrete Element Methods, MIT, 1993.

[6] Allen, M. B. Flow - a particle animation application.
http://www.dnai.com/~mba/sortware/flow/, 1999.

[7] http://www.opengl.org

[8] Neider, J. T. Davis, et al., OpenGL Programming
Guide, Adison Wesley, 1993.

Eung-Kon Kim

Received the B.S. degree in electionic

= engineering from Chosun University,
_— Gwangju, Korea, in 1980, the M.S.

degree in electronic engineering from

Hanyang University, Seoul, Korea in

1987 and the Ph.D. degree in Computer

: engineering from Chosun University in
1992.
He is currently a professor of Department of Computer
Science, Sunchon National University.
He is interested in Computer graphics and its applications.

Bong-Kil Yoo

Received B.S. degree in department of
business and administration from
Chosun University, Gwangju, Korea,
in 1983, the M.S. degree in department
of business and administration from
Chosun University, Gwangju, Korea,

in 1988. He is currently a Ph.D. candidate
in Department of Computer Science, Sunchon National
University.

He is interested in Computer Graphics and Cyber
Administration,

Seung-Heon Song

Received B.S. degree in Department of
Phyiscs from Seonam University,
Namwon, Korea in 1998 and M.S.
degree in Major of Industrial Information
Management The Graduate School of
Information Science, Sunchon National
University, Suncheon, Korea, in 2000.
He is currently a Ph.D. candidate in
Department of Computer Science, Sunchon National
University.

He is interested in Computer Graphics and Multimedia.

