• 제목/요약/키워드: (1,3)-Bertrand curve

검색결과 4건 처리시간 0.02초

On Pseudo Null Bertrand Curves in Minkowski Space-time

  • Gok, Ismail;Nurkan, Semra Kaya;Ilarslan, Kazim
    • Kyungpook Mathematical Journal
    • /
    • 제54권4호
    • /
    • pp.685-697
    • /
    • 2014
  • In this paper, we prove that there are no pseudo null Bertrand curve with curvature functions $k_1(s)=1$, $k_2(s){\neq}0$ and $k_3(s)$ other than itself in Minkowski spacetime ${\mathbb{E}}_1^4$ and by using the similar idea of Matsuda and Yorozu [13], we define a new kind of Bertrand curve and called it pseudo null (1,3)-Bertrand curve. Also we give some characterizations and an example of pseudo null (1,3)-Bertrand curves in Minkowski spacetime.

NOTE ON BERTRAND B-PAIRS OF CURVES IN MINKOWSKI 3-SPACE

  • Ilarslan, Kazim;Ucum, Ali;Aslan, Nihal Kilic;Nesovic, Emilija
    • 호남수학학술지
    • /
    • 제40권3호
    • /
    • pp.561-576
    • /
    • 2018
  • In this paper, we define null Cartan and pseudo null Bertrand curves in Minkowski space ${\mathbb{E}}^3_1$ according to their Bishop frames. We obtain the necessary and sufficient conditions for pseudo null curves to be Bertand B-curves in terms of their Bishop curvatures. We prove that there are no null Cartan curves in Minkowski 3-space which are Bertrand B-curves, by considering the cases when their Bertrand B-mate curves are spacelike, timelike, null Cartan and pseudo null curves. Finally, we give some examples of pseudo null Bertrand B-curve pairs.

BERTRAND CURVES IN NON-FLAT 3-DIMENSIONAL (RIEMANNIAN OR LORENTZIAN) SPACE FORMS

  • Lucas, Pascual;Ortega-Yagues, Jose Antonio
    • 대한수학회보
    • /
    • 제50권4호
    • /
    • pp.1109-1126
    • /
    • 2013
  • Let $\mathbb{M}^3_q(c)$ denote the 3-dimensional space form of index $q=0,1$, and constant curvature $c{\neq}0$. A curve ${\alpha}$ immersed in $\mathbb{M}^3_q(c)$ is said to be a Bertrand curve if there exists another curve ${\beta}$ and a one-to-one correspondence between ${\alpha}$ and ${\beta}$ such that both curves have common principal normal geodesics at corresponding points. We obtain characterizations for both the cases of non-null curves and null curves. For non-null curves our theorem formally agrees with the classical one: non-null Bertrand curves in $\mathbb{M}^3_q(c)$ correspond with curves for which there exist two constants ${\lambda}{\neq}0$ and ${\mu}$ such that ${\lambda}{\kappa}+{\mu}{\tau}=1$, where ${\kappa}$ and ${\tau}$ stand for the curvature and torsion of the curve. As a consequence, non-null helices in $\mathbb{M}^3_q(c)$ are the only twisted curves in $\mathbb{M}^3_q(c)$ having infinite non-null Bertrand conjugate curves. In the case of null curves in the 3-dimensional Lorentzian space forms, we show that a null curve is a Bertrand curve if and only if it has non-zero constant second Frenet curvature. In the particular case where null curves are parametrized by the pseudo-arc length parameter, null helices are the only null Bertrand curves.