CURVES ON THE UNIT 3-SPHERE $S^{3}(1)$ IN EUCLIDEAN 4 -SPACE \mathbb{R}^{4}

Chan Yong Kim, JeongHyeong Park, and Sinsuke Yorozu

Abstract

We show many examples of curves on the unit 2-sphere $S^{2}(1)$ in \mathbb{R}^{3} and the unit 3 -sphere $S^{3}(1)$ in \mathbb{R}^{4}. We study whether its curves are Bertrand curves or spherical Bertrand curves and provide some examples illustrating the resultant curves.

1. Introduction

Let C be a regular C^{∞}-curve in an Euclidean 3 -space \mathbb{R}^{3}. We call curve C a C^{∞}-special Frenet curve if there exists the Frenet apparatus $\{\mathbf{t}, \mathbf{n}, \mathbf{b}, \kappa, \tau\}$, where \mathbf{t} is the unit tangent vector field, \mathbf{n} is the unit principal normal vector field, \mathbf{b} is the unit binormal vector field, $\kappa(>0)$ is the curvature function and $\tau(\neq 0)$ is the torsion function. A C^{∞}-special Frenet curve C is called a Bertrand curve if there exists another C^{∞}-special Frenet curve \bar{C} and a C^{∞}-mapping $\varphi: C \rightarrow \bar{C}$ such that the principal normal lines of C and \bar{C} at corresponding points coincide. Here, \bar{C} is called a Bertrand mate of C. It is well-known that a C^{∞}-special Frenet curve C in \mathbb{R}^{3} is a Bertrand curve if and only if there exists a linear relation $a \kappa(s)+b \tau(s)=1$ for all $s \in I$, where a and b are non-zero constant real numbers.

Bertrand curves have attracted many authors $[2,3,6,8,10,13,14]$. We refer to $[1,2,4,5,7]$ for the text book. Izumiya and Takeuchi [8] show that Bertrand curves can be constructed from spherical curves. Aminov [1] proved that a Bertrand curve does not exist in \mathbb{R}^{n} if $n \geq 4$. Matsuda and Yorozu [10] gave a different proof for this. We wonder if Bertrand curves exist in S^{3} or S^{4}. This is the motivation for the present paper. We note that Lucas and J. A. Ortega-Yagües [9] recently obtained a necessary and sufficient condition for a curve on $S^{3}(1)$ to be a Bertrand spherical curve. Our work is independent of theirs and provides a different proof of this fact from an entirely different viewpoint that we believe, taken in conjunction with the work of [9] deepens the understanding of Bertrand spherical curves. In addition, we present many

Received September 7, 2012; Revised February 4, 2013
2010 Mathematics Subject Classification. 53A04.
Key words and phrases. spherical curve, Bertrand curve, spherical Bertrand curve.
concrete examples of curves on the unit 2-sphere $S^{2}(1)$ in \mathbb{R}^{3} and the unit 3sphere $S^{3}(1)$ in \mathbb{R}^{4}. We give Bertrand curves constructed from curves on $S^{2}(1)$ in \mathbb{R}^{3} and we study whether curves on $S^{3}(1)$ are spherical Bertrand curves. We give Bertrand curves constructed from curves on $S^{2}(1)$ in \mathbb{R}^{3} with respect to the method by Izumiya and Takeuchi [8]. Finally, we provide some examples illustrating the resultant curves; these yield concrete examples which do not appear in the literature.

2. Preliminaries

Let \mathbb{R}^{n} be an Euclidean n-space with the inner product \langle,$\rangle . For \mathbf{x} \in \mathbb{R}^{n}$, that is $\mathbf{x}=\left(x^{1}, x^{2}, \ldots, x^{n}\right)^{t}$ for $x^{i} \in \mathbb{R}$ with $1 \leq i \leq n$. Here " $(\cdots)^{t}$ " denotes to the transpose of (\cdots). And we denote $\langle\mathbf{x}, \mathbf{y}\rangle=\sum_{i=1}^{n} x^{i} y^{i}$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, and $\|\mathbf{x}\|=\sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}=\left\{\sum_{i=1}^{n}\left(x^{i}\right)^{2}\right\}^{1 / 2}$ with the origin $\mathbf{o}=(0,0, \ldots, 0)$ in \mathbb{R}^{n}.

Let $S^{n-1}(1):=\left\{\mathbf{x} \mid\|\mathbf{x}\|=1, \mathbf{x} \in \mathbb{R}^{n}\right\}$ be the $(n-1)$-sphere of radius 1 , centered at the origin \mathbf{o} in \mathbb{R}^{n} and $T_{\mathbf{x}}\left(\mathbb{R}^{n}\right)$ be the tangent space of \mathbb{R}^{n} at \mathbf{x}. And, for $\mathbf{x} \in S^{n-1}(1)$, let $T_{\mathbf{x}}\left(S^{n-1}(1)\right)$ be the tangent space of $S^{n-1}(1)$ at \mathbf{x}. We can set $T_{\mathbf{x}}\left(\mathbb{R}^{n}\right)=T_{\mathbf{x}}\left(S^{n-1}(1)\right) \oplus\{\alpha \mathbf{x} \mid \forall \alpha \in \mathbb{R}\}$. Here, $T_{\mathbf{x}}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}^{n}$. We define $P_{\mathbf{x}}: T_{\mathbf{x}}\left(\mathbb{R}^{n}\right) \rightarrow T_{\mathbf{x}}\left(S^{n-1}(1)\right)$ as the orthogonal projection to the tangent space $T_{\mathbf{x}}\left(S^{n-1}(1)\right)$ for $\mathbf{x} \in S^{n-1}(1)$.

Let $f: S^{n-1}(1) \rightarrow \mathbb{R}^{n}$ be a map given by $f(\mathbf{x})=\mathbf{x}$ for in $\mathbf{x} \in S^{n-1}(1)$ in \mathbb{R}^{n}, and $g_{\mathbf{x}}(X, Y):=\left\langle f_{*}(X), f_{*}(Y)\right\rangle$ for $\mathbf{x} \in S^{n-1}(1)$ and $X, Y \in T_{\mathbf{x}}\left(S^{n-1}(1)\right)$.

Let D be a covariant differentiation associated with the linear connection on \mathbb{R}^{n}, and ∇ be a covariant differentiation defined by

$$
\nabla: \mathfrak{X}\left(S^{n-1}(1)\right) \times \mathfrak{X}\left(S^{n-1}(1)\right) \rightarrow \mathfrak{X}\left(S^{n-1}(1)\right) \quad\left((X, Y) \mapsto \nabla_{X} Y\right)
$$

on $S^{n-1}(1)$. Here, ∇ is the Levi-Civita connection associated the induced metric g on $S^{n-1}(1)$. Then, the formula of Gauss is

$$
D_{X} Y=\nabla_{X} Y+h(X, Y) \mathbf{x}
$$

where $\mathbf{x} \in S^{n-1}(1)$ is identified with the unit normal vector field at the point x of $S^{n-1}(1)$.

A regular C^{∞}-curve C in \mathbb{R}^{n} is given by

$$
\mathbf{x}: I \ni t \mapsto \mathbf{x}(t) \in \mathbb{R}^{n},
$$

where $t_{0} \in I \subset \mathbb{R}$. The arc-length s from the point $\mathbf{x}\left(t_{0}\right)$ to a point $\mathbf{x}(t)$ is given by

$$
s=\psi(t)=\int_{t_{0}}^{t}\|\dot{\mathbf{x}}(u)\| \mathrm{du}
$$

then we get the inverse function φ of ψ so that we have $t=\varphi(s)$ with $s \in J \subset \mathbb{R}$.
The curve C is represented by arc-length parameter s as

$$
\mathbf{c}: J \ni s \mapsto \mathbf{c}(s) \in \mathbb{R}^{n},
$$

where $\mathbf{c}=\mathbf{x} \circ \varphi$, that is, $\mathbf{c}(s)=\mathbf{x}(\varphi(s))$.

Here we put

$$
\mathbf{c}^{\prime}(s)=\left.\frac{\mathrm{d} \mathbf{c}}{\mathrm{ds}}\right|_{s}=\frac{\mathrm{d} \mathbf{c}(s)}{\mathrm{ds}}
$$

and

$$
\dot{\mathbf{x}}(\varphi(s))=\left.\frac{\mathrm{d} \mathbf{x}}{\mathrm{dt}}\right|_{t=\varphi(s)}, \quad \ddot{\mathbf{x}}(\varphi(s))=\left.\frac{\mathrm{d}^{2} \mathbf{x}}{\mathrm{dt}^{2}}\right|_{t=\varphi(s)}
$$

then we have

$$
\begin{aligned}
\varphi^{\prime}(s) & =\frac{\mathrm{d} \varphi(s)}{\mathrm{ds}}=\langle\dot{\mathbf{x}}(\varphi(s)), \dot{\mathbf{x}}(\varphi(s))\rangle^{-1 / 2} \\
\varphi^{\prime \prime}(s) & =-\langle\dot{\mathbf{x}}(\varphi(s)), \dot{\mathbf{x}}(\varphi(s))\rangle^{-2}\langle\ddot{\mathbf{x}}(\varphi(s)), \dot{\mathbf{x}}(\varphi(s))\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\mathbf{c}^{\prime}(s) & =\varphi^{\prime}(s) \cdot \dot{\mathbf{x}}(\varphi(s)) \\
\mathbf{c}^{\prime \prime}(s) & =\varphi^{\prime \prime}(s) \cdot \dot{\mathbf{x}}(\varphi(s))+\left(\varphi^{\prime}(s)\right)^{2} \cdot \ddot{\mathbf{x}}(\varphi(s))
\end{aligned}
$$

Hereafter, we shall work in the C^{∞}-category and refer to a special Frenet curve simply as a curve.

3. Examples of spherical curves on $S^{2}(1)$ in \mathbb{R}^{3}

Let $S^{2}(1)$ be the unit sphere in \mathbb{R}^{3} with the origin o and let a, b and c be real numbers. We provide examples of spherical curves on $S^{2}(1)$ in \mathbb{R}^{3} in this section.

Example 1. We consider a C^{∞}-curve $C_{1}(a, b, c)$ in \mathbb{R}^{3} defined by

$$
\mathbf{x}(t)=\left[\begin{array}{c}
a \cos (t)-b \sin (3 t) \\
a \sin (t)+b \cos (3 t) \\
c(\cos (t)+\sin (t))
\end{array}\right], \quad t \in \mathbb{R}
$$

Then we obtain

$$
\|\mathbf{x}(t)\|^{2}=a^{2}+b^{2}+c^{2}+\left(c^{2}-2 a b\right) \sin (2 t)
$$

The curve $C_{1}(a, b, c)$ is a curve on $S^{2}(1)$ if and only if $c^{2}=2 a b$ and $(a+b)^{2}=1$. And we get

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{c}
-a \sin (t)-3 b \cos (3 t) \\
a \cos (t)-3 b \sin (3 t) \\
c(-\sin (t)+\cos (t))
\end{array}\right], \quad t \in \mathbb{R}
$$

Then we obtain
$\|\dot{\mathbf{x}}(t)\|^{2}=\left(a^{2}+9 b^{2}+c^{2}\right)-\left(c^{2}+6 a b\right) \sin (2 t)=\left(a^{2}+9 b^{2}+2 a b\right)-(8 a b) \sin (2 t)$.
The curve $C_{1}(a, b, c)$ is a regular curve (i.e., $\|\dot{\mathbf{x}}(t)\|^{2} \neq 0$) if and only if $\left(a^{2}+9 b^{2}+2 a b\right)-(8 a b)=(a-3 b)^{2}>0$, that is, $a \neq 3 b$. Thus we have a family

$$
\Gamma_{1}=\left\{C_{1}(a, b, c) \mid a, b, c \in \mathbb{R} ; c^{2}=2 a b,(a+b)^{2}=1, a \neq 3 b\right\}
$$

This is a family of spherical, regular and C^{∞}-curves. For a curve C_{1} in Γ_{1}, we calculate that the curvature $\kappa(t)$ and torsion $\tau(t)$ of C_{1} in \mathbb{R}^{3} are

$$
\begin{aligned}
\kappa(t) & =\frac{\sqrt{A_{1}(t)}}{\|\dot{\mathbf{x}}(t)\|^{3}} \\
\tau(t) & =\frac{24 b c\{9 b(\cos (t)-\sin (t))-a(\cos (3 t)+\sin (3 t))\}}{A_{1}(t)}
\end{aligned}
$$

where $A_{1}(t)=a^{4}+4 a^{3} b+30 a^{2} b^{2}+180 a b^{3}+729 b^{4}-24 a b\left(a^{2}+2 a b+33 b^{2}\right) \sin (2 t)+$ $192 a^{2} b^{2} \sin ^{2}(2 t)$.

Example 2. We consider a C^{∞}-curve $C_{2}(a, b, c)$ in \mathbb{R}^{3} defined by

$$
\mathbf{x}(t)=\left[\begin{array}{c}
a \cos (t)-b \cos (3 t) \\
a \sin (t)-b \sin (3 t) \\
c \cos (t)
\end{array}\right], \quad t \in \mathbb{R}
$$

Then we obtain

$$
\|\mathbf{x}(t)\|^{2}=(a+b)^{2}+\left(c^{2}-4 a b\right) \cos ^{2}(t)
$$

The curve $C_{2}(a, b, c)$ is a curve on $S^{2}(1)$ if and only if $c^{2}=4 a b$ and $(a+b)^{2}=1$. And we get

$$
\dot{\mathbf{x}}(t)=\left[\begin{array}{c}
-a \sin (t)+3 b \sin (3 t) \\
a \cos (t)-3 b \cos (3 t) \\
-c \sin (t)
\end{array}\right], \quad t \in \mathbb{R}
$$

Then we obtain

$$
\|\dot{\mathbf{x}}(t)\|^{2}=(a-3 b)^{2}+\left(c^{2}+12 a b\right) \sin ^{2}(t)=(a-3 b)^{2}+16 a b \sin ^{2}(t) .
$$

The curve $C_{2}(a, b, c)$ is a regular curve if and only if $a \neq 3 b$. Thus we have a family

$$
\Gamma_{2}=\left\{C_{2}(a, b, c) \mid a, b, c \in R ; c^{2}=4 a b,(a+b)^{2}=1, a \neq 3 b\right\}
$$

This is a family of spherical, regular and C^{∞}-curves. For a curve C_{2} in Γ_{2}, we calculate that the curvature $\kappa(t)$ and torsion $\tau(t)$ of C_{2} in \mathbb{R}^{3} are

$$
\begin{aligned}
\kappa(t) & =\frac{\sqrt{B_{1}(t)}}{\|\dot{\mathbf{x}}(t)\|^{3}} \\
\tau(t) & =\frac{24 b c(-9 b \sin (t)+a \sin (3 t))}{B_{1}(t)}
\end{aligned}
$$

where $B_{1}(t)=(a-3 b)^{2}\left((a+9 b)^{2}-32 a b\right)+48 a b(a-3 b)(a-11 b) \sin ^{2}(t)+$ $768 a^{2} b^{2} \sin ^{4}(t)$. We know the elements of Γ_{1} do not map isometrically to elements of Γ_{2}.

4. Bertrand curves in \mathbb{R}^{3} constructed from spherical curves and their illustrations

We describe Bertrand curves in \mathbb{R}^{3} constructed from spherical curves and their illustrations in this section.

Example 3. We consider a small circle C_{3} on $S^{2}(1)$ defined by

$$
\mathbf{c}(s)=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \cos (\sqrt{2} s) \\
\frac{1}{\sqrt{2}} \sin (\sqrt{2} s) \\
\frac{1}{\sqrt{2}}
\end{array}\right], \quad s \in \mathbb{R}
$$

with respect to the arc-length parameter s.
By the direct computation, we get

$$
\begin{gathered}
\|\mathbf{c}(s)\|=1, \\
\mathbf{c}^{\prime}(s)=\left[\begin{array}{c}
-\cos (\sqrt{2} s) \|=1 \\
\cos (\sqrt{2} s) \\
0
\end{array}\right], \quad \mathbf{c}^{\prime \prime}(s)=\left[\begin{array}{c}
-\sqrt{2} \cos (\sqrt{2} s) \\
-\sqrt{2} \sin (\sqrt{2} s) \\
0
\end{array}\right]
\end{gathered}
$$

for all $s \in \mathbb{R}$. Then, we have $\left\langle\mathbf{c}^{\prime \prime}(s), \mathbf{c}(s)\right\rangle=-1$ and $\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2}=2$. Thus, we obtain $\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2}-1=1$. Next we get

$$
\mathbf{e}_{2}(s)=\mathbf{c}(s) \times \mathbf{e}_{1}(s)=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \cos (\sqrt{2} s) \\
-\frac{1}{\sqrt{2}} \sin (\sqrt{2} s) \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

for all $s \in \mathbb{R}$. And also, we get

$$
\mathbf{c}^{\prime \prime}(s)-\left\langle\mathbf{c}^{\prime \prime}(s), \mathbf{c}(s)\right\rangle \mathbf{c}(s)=\mathbf{c}^{\prime \prime}(s)+\mathbf{c}(s)=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \cos (\sqrt{2} s) \\
-\frac{1}{\sqrt{2}} \sin (\sqrt{2} s) \\
\frac{1}{\sqrt{2}}
\end{array}\right]
$$

for all $s \in \mathbb{R}$. Thus we have, for all $s \in \mathbb{R}$,

$$
\left\{\begin{aligned}
k(s) & =1 \\
\nabla_{s} \mathbf{e}_{1}(s) & =k(s) \mathbf{e}_{2}(s)
\end{aligned}\right.
$$

Next we compute

$$
\mathbf{e}_{2}^{\prime}(s)=\left[\begin{array}{c}
\sin (\sqrt{2} s) \\
-\cos (\sqrt{2} s) \\
0
\end{array}\right]
$$

for all $s \in \mathbb{R}$ and $\left\langle\mathbf{e}_{2}^{\prime}(s), \mathbf{c}(s)\right\rangle=0$. On the other hand,

$$
\nabla_{s} \mathbf{e}_{2}(s)=\mathbf{e}_{2}^{\prime}(s)=(-1) \mathbf{e}_{1}(s)=-k(s) \mathbf{e}_{1}(s)
$$

for all $s \in \mathbb{R}$. Therefore we have

$$
\left\{\begin{array}{l}
\nabla_{s} \mathbf{e}_{1}(s)=k(s) \mathbf{e}_{2}(s) \\
\nabla_{s} \mathbf{e}_{2}(s)=-k(s) \mathbf{e}_{1}(s) \\
k(s)=1
\end{array}\right.
$$

for all $s \in \mathbb{R}$.
Now, we can construct a Bertrand curve from the curve C_{3} by using Izumiya and Takeuchi's method [8]. The curve C_{3} is depicted as in Figure 1 and we can draw a Bertrand curve from the curve C_{3} as in Figure 2.

Figure 1

Figure 2

Example 1'. We consider a C^{∞}-curve $C_{1}(a, b, c)$ in \mathbb{R}^{3} defined by

$$
\mathbf{x}(t)=\left[\begin{array}{c}
a \cos (t)-b \sin (3 t) \\
a \sin (t)+b \cos (3 t) \\
c(\cos (t)+\sin (t))
\end{array}\right], \quad t \in \mathbb{R}
$$

in a family

$$
\Gamma_{1}=\left\{C_{1}(a, b, c) \mid a, b, c \in \mathbb{R} ; c^{2}=2 a b,(a+b)^{2}=1, a \neq 3 b\right\}
$$

The curvature $k(s)$ of C_{1} with respect to the arc-length parameter s is given by

$$
k(s)=\operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s)\right]
$$

and it is called the geodesic curvature of C_{1}. For $\mathbf{c}(s)=\mathbf{x}(\varphi(s))$, where $t=$ $\varphi(s)$, we get

$$
\begin{aligned}
\mathbf{c}^{\prime}(s) & =\varphi^{\prime}(s) \cdot \dot{\mathbf{x}}(\varphi(s)) \\
\mathbf{c}^{\prime \prime}(s) & =\varphi^{\prime \prime}(s) \cdot \dot{\mathbf{x}}(\varphi(s))+\left(\varphi^{\prime}(s)\right)^{2} \cdot \ddot{\mathbf{x}}(\varphi(s))
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi^{\prime}(s) & =\langle\dot{\mathbf{x}}(\varphi(s)), \dot{\mathbf{x}}(\varphi(s))\rangle^{-1 / 2} \\
\varphi^{\prime \prime}(s) & =-\langle\dot{\mathbf{x}}(\varphi(s)), \dot{\mathbf{x}}(\varphi(s))\rangle^{-2}\langle\ddot{\mathbf{x}}(\varphi(s)), \dot{\mathbf{x}}(\varphi(s))\rangle
\end{aligned}
$$

Thus we have

$$
\operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s)\right]=\left(\varphi^{\prime}(s)\right)^{3} \operatorname{det}[\mathbf{x}(\varphi(s)), \dot{\mathbf{x}}(\varphi(s)), \ddot{\mathbf{x}}(\varphi(s))]
$$

Thus, with respect to the parameter t, the curvature $k(t)$ at $\mathbf{x}(t)$ (i.e., $\mathbf{c}(s)=$ $\mathbf{x}(\varphi(s)))$ is given by

$$
\frac{8 b c\{3 b(\cos (t)+\sin (t)+a(\cos (3 t)-\sin (3 t))\}}{\left\{a^{2}+9 b^{2}+2 a b-8 a b \sin (2 t)\right\}^{3 / 2}},
$$

where $c^{2}=2 a b$ and $(a+b)^{2}=1$.
We can construct a Bertrand curve from the curve C_{1} in Γ_{1} by using Izumiya and Takeuchi's method [8]. In the case of $a=1 / 4, b=3 / 4$ and $c>0$, the curve C_{1} is depicted as in Figure 3 and we can draw a Bertrand curve from the curve C_{1} as in Figure 4.

Figure 3

Figure 4

Example $\mathbf{2}^{\prime}$. We consider a C^{∞}-curve $C_{2}(a, b, c)$ in \mathbb{R}^{3} defined by

$$
\mathbf{x}(t)=\left[\begin{array}{c}
a \cos (t)-b \cos (3 t) \\
a \sin (t)-b \sin (3 t) \\
c \cos (t)
\end{array}\right], \quad t \in \mathbb{R}
$$

in a family

$$
\Gamma_{2}=\left\{C_{2}(a, b, c) \mid a, b, c \in R ; c^{2}=4 a b,(a+b)^{2}=1, a \neq 3 b\right\}
$$

Since $k(s)=\operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s)\right]=\left(\varphi^{\prime}(s)\right)^{3} \operatorname{det}[\mathbf{x}(\varphi(s)), \dot{\mathbf{x}}(\varphi(s)), \ddot{\mathbf{x}}(\varphi(s))]$, then the curvature $k(t)$ at $\mathbf{x}(t)$ is given by

$$
\frac{8 b c(3 b \cos (t)-a \cos (3 t))}{\left((a-3 b)^{2}+16 a b \sin ^{2}(t)\right)^{\frac{3}{2}}},
$$

where $c^{2}=4 a b$ and $(a+b)^{2}=1$ with respect to the parameter t.
We can construct a Bertrand curve from the curve C_{2} in Γ_{2} by using Izumiya and Takeuchi's method [8]. In the case of $a=1 / 4, b=3 / 4$ and $c>0$, the curve C_{2} is depicted as in Figure 5 and we can draw a Bertrand curve from the curve C_{2} as in Figure 6 .

Figure 5

Figure 6

Next, a circle C_{4} on $S^{2}(1)$ is given by

$$
\mathbf{x}(t)=\left[\begin{array}{c}
\frac{1}{4}+\frac{1}{2} \cos (t) \\
\frac{1}{2} \sin (t) \\
\frac{1}{4}(11-4 \cos (t))^{\frac{1}{2}}
\end{array}\right], \quad t \in \mathbb{R}
$$

Here, C_{4} is a curve which is the intersection of $S^{2}(1)$ and a circular cylinder

$$
\left\{(x, y, z) \left\lvert\,\left(x-\frac{1}{4}\right)^{2}+y^{2}=\frac{1}{4}\right., z \geq 0\right\}
$$

This curve is depicted as in Figure 7.

Figure 7

And, the curve C_{5} on $S^{2}(1)$ is given by

$$
\mathbf{x}(t)=\left[\begin{array}{c}
\cos (t) \sqrt{1-\frac{1}{4}(\sin (2 t))^{2}} \\
\sin (t) \sqrt{1-\frac{1}{4}(\sin (2 t))^{2}} \\
\frac{1}{2} \sin (2 t)
\end{array}\right], \quad t \in \mathbb{R}
$$

This curve is depicted as in Figure 8 (see the next page).
5. Spherical Bertrand curves on $S^{2}(1)$ in \mathbb{R}^{3}

In this section, we study a spherical Bertrand curve on $S^{2}(1)$ and its spherical Bertrand curve. We recall that a curve C in $\mathbb{R}^{n}(n=2,3)$ is called a Bertrand curve if there exists another curve \hat{C}, distinct from C, and a bijection f between C and \hat{C} such that C and \hat{C} have the same principal normal line at each pair of corresponding points under f. The curve \hat{C} is called a Bertrand mate curve of $C[7]$. The following results are well-known.

Figure 8
(A) Every curve in \mathbb{R}^{2} is a Bertrand curve.
(B) A circular helix in \mathbb{R}^{3} is a Bertrand curve.

We have the following definition:
Definition. A curve C on $S^{n-1}(1)$ in \mathbb{R}^{n} is called a spherical Bertrand curve if there exists a curve \tilde{C}, distinct from C, and a bijection f between C and \tilde{C} such that C and \tilde{C} have the same principal normal great circle at each pair of corresponding points under f. The curve \tilde{C} is called a spherical Bertrand mate curve of C.

A curve $\mathbf{c}: I \ni s \mapsto \mathbf{c}(s) \in S^{2}(1)$ is a parametrized curve C with arclength parameter s. Thus we have $\|\mathbf{c}(s)\|=1$ and $\left\|\mathbf{c}^{\prime}(s)\right\|=1$. We put $\mathbf{e}_{1}(s)=\mathbf{c}^{\prime}(s) \in T_{\mathbf{c}(s)}\left(S^{2}(1)\right)$ and $\mathbf{e}_{2}(s)=\mathbf{c}(s) \times \mathbf{c}^{\prime}(s) \in T_{\mathbf{c}(s)}\left(S^{2}(1)\right)$. We have
(a) $\langle\mathbf{c}(s), \mathbf{c}(s)\rangle=1,\left\langle\mathbf{c}^{\prime}(s), \mathbf{c}^{\prime}(s)\right\rangle=1$.
(b) $\left\langle\mathbf{c}(s), \mathbf{c}^{\prime}(s)\right\rangle=0,\left\langle\mathbf{c}(s), \mathbf{c}^{\prime \prime}(s)\right\rangle=-1$.
(c) $\left\langle\mathbf{c}(s) \times \mathbf{c}^{\prime \prime}(s), \mathbf{c}^{\prime}(s)\right\rangle=\operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime \prime}(s), \mathbf{c}^{\prime}(s)\right]=-\operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s)\right]$.
(d) $\left\|\mathbf{c}^{\prime \prime}(s)+\mathbf{c}(s)\right\|^{2}=\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2}-1,\left\|\mathbf{c}(s) \times \mathbf{c}^{\prime \prime}(s)\right\|^{2}=\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2}-1$.

Now, by (b), we have the $T_{\mathbf{c}(s)}\left(S^{2}(1)\right)$-part of $\mathbf{e}_{1}^{\prime}(s)=\mathbf{c}^{\prime \prime}(s)$ is given by $\mathbf{c}^{\prime \prime}(s)$ $+\mathbf{c}(s)$.

We denote $T_{\mathbf{c}(s)}\left(S^{2}(1)\right)$ - part of $\mathbf{e}_{1}^{\prime}(s)$ by $\nabla_{s} \mathbf{e}_{1}(s)$. We have

$$
\begin{aligned}
\left\langle\nabla_{s} \mathbf{e}_{1}(s), \mathbf{e}_{2}(s)\right\rangle & =\left\langle\mathbf{c}^{\prime \prime}(s)+\mathbf{c}(s), \mathbf{c}(s) \times \mathbf{c}^{\prime}(s)\right\rangle \\
& =\left\langle\mathbf{c}^{\prime \prime}(s), \mathbf{c}(s) \times \mathbf{c}^{\prime}(s)\right\rangle+\left\langle\mathbf{c}(s), \mathbf{c}(s) \times \mathbf{c}^{\prime}(s)\right\rangle \\
& =\left\langle\mathbf{c}(s) \times \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s)\right\rangle+\left\langle\mathbf{c}(s) \times \mathbf{c}^{\prime}(s), \mathbf{c}(s)\right\rangle \\
& =\operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s)\right]+\operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s) \mathbf{c}(s)\right] \\
& =\operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s)\right]
\end{aligned}
$$

Thus we have

$$
\nabla_{s} \mathbf{e}_{1}(s)=\operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s)\right] \cdot \mathbf{e}_{2}(s) .
$$

We remark that $\operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s)\right]>0$ and $k(s)=\operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s)\right]$ $=\sqrt{\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2}-1}$. Then, we can take a constant number $\theta \in(0,2 \pi)$ such that

$$
\operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s)\right] \neq \cot (\theta)
$$

for any s, we define a curve as:

$$
\tilde{\mathbf{c}}(s)=\cos (\theta) \cdot \mathbf{c}(s)+\sin (\theta) \cdot \mathbf{e}_{2}(s), s \in J
$$

This curve is on $S^{2}(1)$. We have

$$
\begin{aligned}
\frac{\mathrm{d} \tilde{\mathbf{c}}(s)}{\mathrm{ds}} & =\cos (\theta) \cdot \mathbf{c}^{\prime}(s)+\sin (\theta) \cdot \mathbf{e}_{2}^{\prime}(s) \\
& =\cos (\theta) \cdot \mathbf{c}^{\prime}(s)+\sin (\theta) \cdot\left(\mathbf{c}(s) \times \mathbf{c}^{\prime \prime}(s)\right)
\end{aligned}
$$

Thus we have $\left\langle\frac{\mathrm{d} \tilde{\mathbf{c}}(s)}{\mathrm{ds}}, \mathbf{c}(s)\right\rangle=0$ so that $\frac{\mathrm{d} \tilde{\mathbf{c}}(s)}{\mathrm{ds}} \in T_{\mathbf{c}(s)}\left(S^{2}(1)\right)$. From (\dagger), we have

$$
\begin{aligned}
\left\|\frac{\mathrm{d} \tilde{\mathbf{c}}(s)}{\mathrm{ds}}\right\|^{2}= & (\cos (\theta))^{2}\left\|\mathbf{c}^{\prime}(s)\right\|^{2} \\
& +2 \sin (\theta) \cos (\theta)\left\langle\mathbf{c}^{\prime}(s), \mathbf{c}(s) \times \mathbf{c}^{\prime \prime}(s)\right\rangle \\
& +(\sin (\theta))^{2}\left\|\mathbf{c}(s) \times \mathbf{c}^{\prime \prime}(s)\right\|^{2} \\
= & (\cos (\theta))^{2}-2 \sin (\theta) \cos (\theta) \operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s)\right] \\
& +(\sin (\theta))^{2}\left(\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2}-1\right) \\
= & \left\{\cos (\theta)-\operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s)\right] \sin (\theta)\right\}^{2}>0
\end{aligned}
$$

Let \tilde{s} be the arc-length parameter of \tilde{C}. We set $s=\Phi(\tilde{s})$, then we have

$$
\left(\frac{\mathrm{d} \Phi(\tilde{s})}{\mathrm{d} \tilde{\mathbf{s}}}\right)^{2}=\left\{\cos (\theta)-\operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s)\right] \sin (\theta)\right\}^{-2}
$$

The curve \tilde{C} is represented as:

$$
\tilde{\mathbf{c}}(\tilde{s})=\cos (\theta) \cdot \mathbf{c}(\Phi(\tilde{s}))+\sin (\theta) \cdot \mathbf{e}_{2}(\Phi(\tilde{s}))
$$

We put $\tilde{\mathbf{c}}^{*}(\tilde{s})=\frac{\mathrm{d} \tilde{\mathrm{c}}}{\mathrm{d}}(\tilde{s})$, that is, $*$ denotes the derivative with respect to \tilde{s}. We have

$$
\begin{aligned}
\tilde{\mathbf{c}}^{*}(\tilde{s}) & =\Phi^{*}(\tilde{s})\left\{\cos (\theta) \cdot \mathbf{c}^{\prime}(\Phi(\tilde{s}))+\sin (\theta) \cdot \mathbf{e}_{2}^{\prime}(\Phi(\tilde{s}))\right\} \\
& =\Phi^{*}(\tilde{s})\left\{\cos (\theta) \cdot \mathbf{c}^{\prime}(\Phi(\tilde{s}))+\sin (\theta) \cdot\left(\mathbf{c}(\Phi(\tilde{s})) \times \mathbf{c}^{\prime \prime}(\Phi(\tilde{s}))\right)\right\}
\end{aligned}
$$

We put $\tilde{\mathbf{e}}_{1}(\tilde{s})=\tilde{\mathbf{c}}^{*}(\tilde{s})$ and we have $\left\langle\tilde{\mathbf{e}}_{1}(\tilde{s}), \tilde{\mathbf{c}}(\tilde{s})\right\rangle=0$. We define $\tilde{\mathbf{e}}_{2}(\tilde{s})$ $=\tilde{\mathbf{c}}(\tilde{s}) \times \tilde{\mathbf{e}}_{1}(\tilde{s})$. For ease of writing, we omit (\tilde{s}) and $(\Phi(\tilde{s}))$ in the following. Then we have

$$
\begin{aligned}
\tilde{\mathbf{e}}_{2}= & \left\{\cos (\theta) \cdot \mathbf{c}+\sin (\theta) \cdot \mathbf{e}_{2}\right\} \times \Phi^{*}\left\{\cos (\theta) \cdot \mathbf{c}^{\prime}+\sin (\theta) \cdot \mathbf{e}_{2}^{\prime}\right\} \\
= & \Phi^{*}\left\{(\cos (\theta))^{2} \cdot\left(\mathbf{c} \times \mathbf{c}^{\prime}\right)+\cos (\theta) \sin (\theta) \cdot\left(\mathbf{c} \times \mathbf{e}_{2}^{\prime}\right)\right. \\
& \left.+\sin (\theta) \cos (\theta) \cdot\left(\mathbf{e}_{2} \times \mathbf{c}^{\prime}\right)+(\sin (\theta))^{2} \cdot\left(\mathbf{e}_{2} \times \mathbf{e}_{2}^{\prime}\right)\right\} \\
= & \Phi^{*}\left\{(\cos (\theta))^{2} \cdot \mathbf{e}_{2}+\cos (\theta) \sin (\theta) \cdot\left(\mathbf{c} \times\left(\mathbf{c} \times \mathbf{c}^{\prime \prime}\right)\right)\right.
\end{aligned}
$$

$$
\left.+\sin (\theta) \cos (\theta) \cdot\left(\left(\mathbf{c} \times \mathbf{c}^{\prime}\right) \times \mathbf{c}^{\prime}\right)+(\sin (\theta))^{2} \cdot\left(\left(\mathbf{c} \times \mathbf{c}^{\prime}\right) \times\left(\mathbf{c} \times \mathbf{c}^{\prime \prime}\right)\right)\right\}
$$

By the below equalities:

$$
\begin{aligned}
\mathbf{c} \times\left(\mathbf{c} \times \mathbf{c}^{\prime \prime}\right) & =-\left\{\langle\mathbf{c}, \mathbf{c}\rangle \cdot \mathbf{c}^{\prime \prime}-\left\langle\mathbf{c}^{\prime \prime}, \mathbf{c}\right\rangle \cdot \mathbf{c}\right\} \\
& =-\left(\mathbf{c}^{\prime \prime}+\mathbf{c}\right)=-\operatorname{det}\left[\mathbf{c}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}\right] \cdot \mathbf{e}_{2}, \\
\left(\mathbf{c} \times \mathbf{c}^{\prime}\right) \times \mathbf{c}^{\prime} & =\left\langle\mathbf{c}, \mathbf{c}^{\prime}\right\rangle \cdot \mathbf{c}^{\prime}-\left\langle\mathbf{c}^{\prime}, \mathbf{c}^{\prime}\right\rangle \cdot \mathbf{c}=-\mathbf{c} \\
\left(\mathbf{c} \times \mathbf{c}^{\prime}\right) \times\left(\mathbf{c} \times \mathbf{c}^{\prime \prime}\right) & =\left\langle\mathbf{c}, \mathbf{c} \times \mathbf{c}^{\prime \prime}\right\rangle \cdot \mathbf{c}^{\prime}-\left\langle\mathbf{c}^{\prime}, \mathbf{c} \times \mathbf{c}^{\prime \prime}\right\rangle \cdot \mathbf{c} \\
& =-\left\langle\mathbf{c} \times \mathbf{c}^{\prime \prime}, \mathbf{c}^{\prime}\right\rangle \cdot \mathbf{c}=\operatorname{det}\left[\mathbf{c}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}\right] \cdot \mathbf{c},
\end{aligned}
$$

thus we have

$$
\begin{aligned}
\tilde{\mathbf{e}}_{2}= & \Phi^{*} \cos (\theta)\left(\cos (\theta)-\operatorname{det}\left[\mathbf{c}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}\right] \sin (\theta)\right) \cdot \mathbf{e}_{2} \\
& -\Phi^{*} \sin (\theta)\left(\cos (\theta)-\operatorname{det}\left[\mathbf{c}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}\right] \sin (\theta)\right) \cdot \mathbf{c} .
\end{aligned}
$$

The principal normal great circle of \tilde{C} at point $\tilde{\mathbf{c}}(\Phi(\tilde{s}))$ is given by

$$
\left\{\cos (\alpha) \cdot \tilde{\mathbf{c}}(\tilde{s})+\sin (\alpha) \cdot \tilde{\mathbf{e}}_{2}(\tilde{s}) \mid \alpha \in \mathbb{R}\right\} .
$$

Since it holds, we omit (\tilde{s}) and $(\Phi(\tilde{s}))$ again,

$$
\begin{aligned}
& \cos (\alpha) \cdot \tilde{\mathbf{c}}+\sin (\alpha) \cdot \tilde{\mathbf{e}}_{2} \\
=\{ & \left\{\cos (\alpha) \cos (\theta)-\left(\Phi^{*}\right) \sin (\alpha) \sin (\theta)\left(\cos (\theta)-\operatorname{det}\left[\mathbf{c}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}\right] \sin (\theta)\right)\right\} \cdot \mathbf{c} \\
& +\left\{\cos (\alpha) \sin (\theta)+\left(\Phi^{*}\right) \sin (\alpha) \cos (\theta)\left(\cos (\theta)-\operatorname{det}\left[\mathbf{c}, \mathbf{c}^{\prime}, \mathbf{c}^{\prime \prime}\right] \sin (\theta)\right)\right\} \cdot \mathbf{e}_{2},
\end{aligned}
$$

curves C and \tilde{C} have the same principal normal great circle at each pair of corresponding points. Thus we have the following theorem.
Theorem 1. Every curve on $S^{2}(1)$ is a spherical Bertrand curve.
6. Spherical Bertrand curves on $S^{3}(1)$ in $\mathbb{R}^{\mathbf{4}}$

In this section, we discuss a spherical Bertrand curves on $S^{3}(1)$ in the same manner as in Section 5. The purpose of this section is to get conditions of a spherical Bertrand curve on $S^{3}(1)$ and represent it with $\mathbf{c}, \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s)$, etc. Let $\mathbf{c}: J \ni s \mapsto \mathbf{c}(s) \in S^{3}(1)$ in \mathbb{R}^{4} be a curve C parametrized by the arc-length s. Then we have

$$
\|\mathbf{c}(s)\|=1, \quad\left\|\mathbf{c}^{\prime}(s)\right\|=1
$$

Also we know
(a) $\langle\mathbf{c}(s), \mathbf{c}(s)\rangle=1,\left\langle\mathbf{c}^{\prime}(s), \mathbf{c}^{\prime}(s)\right\rangle=1$.
(b) $\left\langle\mathbf{c}^{\prime}(s), \mathbf{c}(s)\right\rangle=0,\left\langle\mathbf{c}^{\prime \prime}(s), \mathbf{c}^{\prime}(s)\right\rangle=0$.
(c) $\left\langle\mathbf{c}^{\prime \prime}(s), \mathbf{c}(s)\right\rangle=-1,\left\langle\mathbf{c}^{\prime \prime \prime}(s), \mathbf{c}(s)\right\rangle=0$.
(d) $\left\langle\mathbf{c}^{\prime \prime \prime}(s), \mathbf{c}^{\prime}(s)\right\rangle=-\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2},\left\langle\mathbf{c}^{\prime \prime \prime}(s), \mathbf{c}^{\prime \prime}(s)\right\rangle=\frac{1}{2}\left(\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2}\right)^{\prime}$.

And then, we have

$$
\mathbf{c}^{\prime}(s) \in T_{\mathbf{c}(s)}\left(S^{3}(1)\right)
$$

We denote $\mathbf{e}_{1}(s):=\mathbf{c}^{\prime}(s)$ for all $s \in I$. Since $\left\langle\mathbf{c}^{\prime \prime}(s)-\left\langle\mathbf{c}^{\prime \prime}(s), \mathbf{c}(s)\right\rangle \mathbf{c}(s), \mathbf{c}(s)\right\rangle=0$, then we have

$$
\mathbf{c}^{\prime \prime}(s)-\left\langle\mathbf{c}^{\prime \prime}(s), \mathbf{c}(s)\right\rangle \mathbf{c}(s) \in T_{\mathbf{c}(s)}\left(S^{3}(1)\right) .
$$

Then we obtain

$$
P_{\mathbf{c}(s)}\left(\mathbf{e}_{1}^{\prime}(s)\right)=\nabla_{s} \mathbf{e}_{1}(s)=\mathbf{c}^{\prime \prime}(s)-\left\langle\mathbf{c}^{\prime \prime}(s), \mathbf{c}(s)\right\rangle \mathbf{c}(s) .
$$

Therefore, we get

$$
\nabla_{s} \mathbf{e}_{1}(s)=\mathbf{c}^{\prime \prime}(s)+\mathbf{c}(s) .
$$

And we have

$$
\left\|\mathbf{c}^{\prime \prime}(s)+\mathbf{c}(s)\right\|^{2}=\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2}-1
$$

We remark that $0<\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2}-1<+\infty$ and put $k(s)=\sqrt{\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2}-1}$ for all $s \in J$. Then, we denote

$$
\mathbf{e}_{2}(s):=\frac{1}{k(s)}\left(\mathbf{c}^{\prime \prime}(s)+\mathbf{c}(s)\right) .
$$

Thus we have

$$
\nabla_{s} \mathbf{e}_{1}(s)=k(s) \mathbf{e}_{2}(s)
$$

and

$$
\mathbf{e}_{2}^{\prime}(s)=\left(\frac{1}{k(s)}\right)^{\prime}\left(\mathbf{c}^{\prime \prime}(s)+\mathbf{c}(s)\right)+\frac{1}{k(s)}\left(\mathbf{c}^{\prime \prime \prime}(s)+\mathbf{c}^{\prime}(s)\right) .
$$

Since $\left\langle\mathbf{e}_{2}^{\prime}(s), \mathbf{c}(s)\right\rangle=0$, then we have

$$
\mathbf{e}_{2}^{\prime}(s) \in T_{\mathbf{c}(s)}\left(S^{3}(1)\right) .
$$

So, we have

$$
\nabla_{s} \mathbf{e}_{2}(s)=\left(\frac{1}{k(s)}\right) \mathbf{c}^{\prime \prime \prime}(s)+\left(\frac{1}{k(s)}\right)^{\prime} \mathbf{c}^{\prime \prime}(s)+\left(\frac{1}{k(s)}\right) \mathbf{c}^{\prime}(s)+\left(\frac{1}{k(s)}\right)^{\prime} \mathbf{c}(s)
$$

Then, we obtain

$$
\begin{aligned}
& \nabla_{s} \mathbf{e}_{2}(s)+k(s) \mathbf{e}_{1}(s) \\
= & \left(\frac{1}{k(s)}\right)\left(\mathbf{c}^{\prime \prime \prime}(s)+\mathbf{c}^{\prime}(s)\right)+\left(\frac{1}{k(s)}\right)^{\prime}\left(\mathbf{c}^{\prime \prime}(s)+\mathbf{c}(s)\right)+k(s) \mathbf{c}^{\prime}(s)
\end{aligned}
$$

and

$$
\left\|\nabla_{s} \mathbf{e}_{2}(s)+k(s) \mathbf{e}_{1}(s)\right\|^{2}=\frac{1}{(k(s))^{2}}\left[\left\|\mathbf{c}^{\prime \prime \prime}(s)\right\|^{2}-\left(k^{\prime}(s)\right)^{2}-\left\{1+(k(s))^{2}\right\}^{2}\right] .
$$

We denote $w(s)$ by

$$
w(s):=\varepsilon \frac{1}{k(s)} \sqrt{\left\|\mathbf{c}^{\prime \prime \prime}(s)\right\|^{2}-\left(k^{\prime}(s)\right)^{2}-\left\{1+(k(s))^{2}\right\}^{2}} .
$$

Here, $\varepsilon= \pm 1$. We assume that $w(s) \neq 0$, since C is a C^{∞}-special Frenet curve.
From $k(s)=\left(\left\langle\mathbf{c}^{\prime \prime}(s), \mathbf{c}^{\prime \prime}(s)\right\rangle-1\right)^{1 / 2}$, then we obtain

$$
k^{\prime}(s)=\frac{\left\langle\mathbf{c}^{\prime \prime \prime}(s), \mathbf{c}^{\prime \prime}(s)\right\rangle}{\left(\left\langle\mathbf{c}^{\prime \prime}(s), \mathbf{c}^{\prime \prime}(s)\right\rangle-1\right)^{1 / 2}}
$$

Thus we obtain

$$
w(s)=\varepsilon \frac{1}{\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2}-1} \sqrt{\left\|\mathbf{c}^{\prime \prime \prime}(s)\right\|^{2}-\frac{\left(\left\langle\mathbf{c}^{\prime \prime \prime}(s), \mathbf{c}^{\prime \prime}(s)\right\rangle\right)^{2}}{\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2}-1}-\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{4}}
$$

Then we define

$$
\begin{aligned}
\mathbf{e}_{3}(s)= & \frac{1}{w(s)}\left(\nabla_{s} \mathbf{e}_{2}(s)+k(s) \mathbf{e}_{1}(s)\right) \\
= & \left(\frac{1}{w(s) k(s)}\right) \mathbf{c}^{\prime \prime \prime}(s)+\left(\frac{1}{w(s)}\right)\left(\frac{1}{k(s)}\right)^{\prime} \mathbf{c}^{\prime \prime}(s) \\
& +\left(\frac{1+(k(s))^{2}}{w(s) k(s)}\right) \mathbf{c}^{\prime}(s)+\left(\frac{1}{w(s)}\right)\left(\frac{1}{k(s)}\right)^{\prime} \mathbf{c}(s) .
\end{aligned}
$$

Since we define that the orientation of the frame $\left\{\mathbf{c}(s), \mathbf{e}_{1}(s), \mathbf{e}_{2}(s), \mathbf{e}_{3}(s)\right\}$ at $\mathbf{c}(s)$ is positive, we have that

$$
\begin{gathered}
\operatorname{det}\left[\mathbf{c}(s), \mathbf{e}_{1}(s), \mathbf{e}_{2}(s), \mathbf{e}_{3}(s)\right]=\frac{1}{w(s)(k(s))^{2}} \operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s), \mathbf{c}^{\prime \prime \prime}(s)\right]>0 \\
w(s)\left\{\begin{array}{lll}
>0 & \text { if } & \operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s), \mathbf{c}^{\prime \prime \prime}(s)\right]>0 \\
<0 & \text { if } & \operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s), \mathbf{c}^{\prime \prime \prime}(s)\right]<0
\end{array}\right.
\end{gathered}
$$

and

$$
\begin{aligned}
& \varepsilon=+1 \\
& w(s)=\frac{\operatorname{det}\left[\mathbf{c}(s), \mathbf{c}^{\prime}(s), \mathbf{c}^{\prime \prime}(s), \mathbf{c}^{\prime \prime \prime}(s)\right]}{(k(s))^{2}}
\end{aligned}
$$

by taking account of $\operatorname{det}\left[\mathbf{c}(s), \mathbf{e}_{1}(s), \mathbf{e}_{2}(s), \mathbf{e}_{3}(s)\right]=1$. Then, we obtain

$$
\begin{aligned}
\mathbf{e}_{3}^{\prime}(s)= & \left(\frac{1}{w(s) k(s)}\right)^{\prime} \mathbf{c}^{\prime \prime \prime}(s)+\left(\frac{1}{w(s) k(s)}\right) \mathbf{c}^{\prime \prime \prime \prime}(s) \\
& +\left\{\left(\frac{1}{w(s)}\right)\left(\frac{1}{k(s)}\right)^{\prime}\right\}^{\prime} \mathbf{c}^{\prime \prime}(s)+\left(\frac{1}{w(s)}\right)\left(\frac{1}{k(s)}\right)^{\prime} \mathbf{c}^{\prime \prime \prime}(s) \\
& +\left(\frac{1+(k(s))^{2}}{w(s) k(s)}\right)^{\prime} \mathbf{c}^{\prime}(s)+\left(\frac{1+(k(s))^{2}}{w(s) k(s)}\right) \mathbf{c}^{\prime \prime}(s) \\
& +\left\{\left(\frac{1}{w(s)}\right)\left(\frac{1}{k(s)}\right)^{\prime}\right\} \mathbf{c}(s)+\left(\frac{1}{w(s)}\right)\left(\frac{1}{k(s)}\right)^{\prime} \mathbf{c}^{\prime}(s)
\end{aligned}
$$

and since $\left\langle\mathbf{e}_{3}^{\prime}(s), \mathbf{c}(s)\right\rangle=0$, then we obtain

$$
\nabla_{s} \mathbf{e}_{3}(s)=\mathbf{e}_{3}^{\prime}(s)
$$

Also we obtain $\left\langle\mathbf{e}_{3}^{\prime}(s), \mathbf{e}_{1}(s)\right\rangle=0$. And, since $\left\langle\mathbf{e}_{3}(s), \mathbf{e}_{3}(s)\right\rangle=1$, then we obtain $\left\langle\mathbf{e}_{3}^{\prime}(s), \mathbf{e}_{3}(s)\right\rangle=0$ for all $s \in I$. We have $\left\langle\mathbf{e}_{3}^{\prime}(s), \mathbf{c}^{\prime \prime}(s)\right\rangle=-w(s) k(s)$ and
$\left\langle\mathbf{e}_{3}^{\prime}(s), \mathbf{e}_{2}(s)\right\rangle=-w(s)$. Therefore, we obtain

$$
\left\{\begin{aligned}
\nabla_{s} \mathbf{e}_{1}(s) & =k(s) \mathbf{e}_{2}(s) \\
\nabla_{s} \mathbf{e}_{2}(s) & =-k(s) \mathbf{e}_{1}(s)+w(s) \mathbf{e}_{3}(s) \\
\nabla_{s} \mathbf{e}_{3}(s) & =-w(s) \mathbf{e}_{2}(s)
\end{aligned}\right.
$$

Now, to find a spherical Bertrand mate curve of C we consider a curve \bar{C} defined by

$$
\hat{\mathbf{c}}(s)=\cos (\theta(s)) \cdot \mathbf{c}(s)+\sin (\theta(s)) \cdot \mathbf{e}_{2}(s), \quad \sin (\theta(s)) \neq 0
$$

for $s \in J$, because a spherical Bertrand mate curve is distinct from C. The curve \bar{C} is on $S^{3}(1)$. Then, We have

$$
\begin{aligned}
\hat{\mathbf{c}}^{\prime}(s)= & \left.\frac{\mathrm{d} \overline{\mathbf{c}}}{\mathrm{ds}}\right|_{s} \\
= & -\theta^{\prime}(s) \sin (\theta(s)) \cdot \mathbf{c}(s)+\cos (\theta(s)) \cdot \mathbf{c}^{\prime}(s) \\
& +\theta^{\prime}(s) \cos (\theta(s)) \cdot \mathbf{e}_{2}(s)+\sin (\theta(s)) \cdot \mathbf{e}_{2}^{\prime}(s) .
\end{aligned}
$$

Since $\left\langle\hat{\mathbf{c}}^{\prime}(s), \mathbf{c}(s)\right\rangle=0$ for all $s \in J$, we have $\theta^{\prime}(s)=0, s \in J$ so that $\theta(s)=\theta$ (θ is a constant number). Thus we have

$$
\begin{aligned}
\hat{\mathbf{c}}^{\prime}(s) & =\cos (\theta) \cdot \mathbf{c}^{\prime}(s)+\sin (\theta) \cdot P_{\overline{\mathbf{c}}(s)}\left(\mathbf{e}_{2}^{\prime}(s)\right) \\
& =\cos (\theta) \cdot \mathbf{e}_{1}(s)+\sin (\theta) \cdot \nabla_{s} \mathbf{e}_{2}(s) \\
& =(\cos (\theta)-k(s) \sin (\theta)) \cdot \mathbf{e}_{1}(s)+(w(s) \sin (\theta)) \cdot \mathbf{e}_{3}(s) .
\end{aligned}
$$

Let \bar{s} be the arc-length parameter of \bar{C} from $\hat{\mathbf{c}}(0)$ to $\hat{\mathbf{c}}(s)$. Then we get a function $\Phi: \bar{J} \rightarrow J$ such that $s=\Phi(\bar{s})$, and the curve \bar{C} is represented by arc-length parameter \bar{s}, that is, $\overline{\mathbf{c}}(\bar{s})=\hat{\mathbf{c}}(\Phi(\bar{s}))$. We have
$\overline{\mathbf{c}}^{*}(\bar{s})=\left.\frac{\mathrm{d} \overline{\mathbf{c}}}{\mathrm{d} \overline{\mathbf{s}}}\right|_{\bar{s}}$

$$
=\Phi^{*}(\bar{s})\left\{(\cos (\theta)-k(\Phi(\bar{s})) \sin (\theta)) \cdot \mathbf{e}_{1}(\Phi(\bar{s}))+(w(\Phi(\bar{s})) \sin (\theta)) \cdot \mathbf{e}_{3}(\Phi(\bar{s}))\right\}
$$

and we have $\overline{\mathbf{c}}^{*}(\bar{s}) \in T_{\overline{\mathbf{c}}(\bar{s})}\left(S^{3}(1)\right)$, that is, $\overline{\mathbf{e}}_{1}(\bar{s})=\overline{\mathbf{c}}^{*}(\bar{s})$. Hereafter, we omit (\bar{s}) and $(\Phi(\bar{s}))$. We have

$$
\begin{aligned}
\overline{\mathbf{e}}_{1}^{*}= & \overline{\mathbf{c}}^{* *} \\
= & \Phi^{* *}\left\{(\cos (\theta)-k \sin (\theta)) \cdot \mathbf{e}_{1}+(w \sin (\theta)) \cdot \mathbf{e}_{3}\right\} \\
& +\left(\Phi^{*}\right)^{2}\left\{-\left(k^{\prime} \sin (\theta)\right) \cdot \mathbf{e}_{1}+(\cos (\theta)-k \sin (\theta)) \cdot \mathbf{e}_{1}^{\prime}\right. \\
& \left.+\left(w^{\prime} \sin (\theta)\right) \cdot \mathbf{e}_{3}+(w \sin (\theta)) \cdot \mathbf{e}_{3}^{\prime}\right\} .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\nabla_{\bar{s}} \overline{\mathbf{e}}_{1}= & \Phi^{* *}\left\{(\cos (\theta)-k \sin (\theta)) \cdot \mathbf{e}_{1}+(w \sin (\theta)) \cdot \mathbf{e}_{3}\right\} \\
& +\left(\Phi^{*}\right)^{2}\left\{-\left(k^{\prime} \sin (\theta)\right) \cdot \mathbf{e}_{1}+(\cos (\theta)-k \sin (\theta)) \cdot \nabla_{s} \mathbf{e}_{1}\right. \\
& \left.+\left(w^{\prime} \sin (\theta)\right) \cdot \mathbf{e}_{3}+(w \sin (\theta)) \cdot \nabla_{s} \mathbf{e}_{3}\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & \left\{\Phi^{* *}(\cos (\theta)-k \sin (\theta))-\left(\Phi^{*}\right)^{2} k^{\prime} \sin (\theta)\right\} \cdot \mathbf{e}_{1} \\
& +\left\{\left(\Phi^{*}\right)^{2}(\cos (\theta)-k \sin (\theta)) k-\left(\Phi^{*}\right)^{2} w^{2} \sin (\theta)\right\} \cdot \mathbf{e}_{2} \\
& +\left\{\Phi^{* *} w \sin (\theta)+\left(\Phi^{*}\right)^{2} w^{\prime} \sin (\theta)\right\} \cdot \mathbf{e}_{3} .
\end{aligned}
$$

The principal normal great circle \tilde{C} of \bar{C} at $\overline{\mathbf{c}}(\bar{s})$ is given by

$$
\tilde{\mathbf{c}}=\cos (\alpha) \cdot \overline{\mathbf{c}}+\sin (\alpha) \cdot \overline{\mathbf{e}}_{2} .
$$

On the other hand, we have $\overline{\mathbf{e}}_{2}=A^{-1} \cdot \nabla_{\bar{s}} \overline{\mathbf{e}}_{1}$, where A denotes the norm of $\nabla_{\bar{s}} \overline{\mathbf{e}}_{1}$. Here, we remark that α is a constant for the same reason of the case of θ. Then we have

$$
\begin{aligned}
\tilde{\mathbf{c}}= & (\cos (\alpha) \cos (\theta)) \cdot \mathbf{c}+(\cos (\alpha) \sin (\theta)) \cdot \mathbf{e}_{2} \\
& +\sin (\alpha) A^{-1}\left\{\Phi^{* *}(\cos (\theta)-k \sin (\theta))-\left(\Phi^{*}\right)^{2} k^{\prime} \sin (\theta)\right\} \cdot \mathbf{e}_{1} \\
& +\sin (\alpha) A^{-1}\left\{\left(\Phi^{*}\right)^{2}(\cos (\theta)-k \sin (\theta)) k-\left(\Phi^{*}\right)^{2} w^{2} \sin (\theta)\right\} \cdot \mathbf{e}_{2} \\
& +\sin (\alpha) A^{-1}\left\{\Phi^{* *} w \sin (\theta)+\left(\Phi^{*}\right)^{2} w^{\prime} \sin (\theta)\right\} \cdot \mathbf{e}_{3} .
\end{aligned}
$$

To get the same principal normal great circle, the components of \mathbf{e}_{1} and \mathbf{e}_{3} of the above equality must vanish. Thus we have

$$
\Phi^{* *}(\cos (\theta)-k \sin (\theta))-\left(\Phi^{*}\right)^{2} k^{\prime} \sin (\theta)=0
$$

and

$$
\Phi^{* *} w \sin (\theta)+\left(\Phi^{*}\right)^{2} w^{\prime} \sin (\theta)=0
$$

so that

$$
\frac{-k^{\prime} \sin (\theta)}{\cos (\theta)-k \sin (\theta)}=\frac{w^{\prime}}{w} .
$$

By solving this differential equation, we have $\cos (\theta)-k \sin (\theta)=\nu w$, where ν is a constant number. The converse is easy to prove if we go reversely. Now we put $\lambda=\cos (\theta)$ and $\mu=\sin (\theta)$, then we have the following.
Theorem 2. A C^{∞}-special Frenet curve on $S^{3}(1)$ is a spherical Bertrand curve if and only if there exist three constants λ, μ and ν such that $\lambda-\mu k(s)=\nu w(s)$, $\lambda^{2}+\mu^{2}=1, \mu \neq 0$.

Corollary 3. A C^{∞}-special Frenet curve on $S^{3}(1)$ satisfying $k(s)=k_{0}$ (constant) and $w(s)=w_{0}$ (constant) is a spherical Bertrand curve.

The following are the examples of spherical curves on $S^{3}(1)$.
Example 4. Let a, b, c and d be constant numbers such that $a^{2}+b^{2}+c^{2}+d^{2}$ $=1$. A C^{∞}-curve C on $S^{3}(1)$ is defined by $\mathbf{c}: \mathbb{R} \rightarrow S^{3}(1)$;

$$
\mathbf{c}(s)=\left[\begin{array}{l}
a \cos (s)-b \sin (s) \\
b \cos (s)+a \sin (s) \\
c \cos (s)-d \sin (s) \\
d \cos (s)+c \sin (s)
\end{array}\right]
$$

for all $s \in \mathbb{R}$.

By the direct computation, we get

$$
\begin{array}{rr}
\|\mathbf{c}(s)\|=1, & \left\|\mathbf{c}^{\prime}(s)\right\|=1, \\
\mathbf{c}^{\prime}(s)=\left[\begin{array}{c}
-a \sin (s)-b \cos (s) \\
-b \sin (s)+a \cos (s) \\
-c \sin (s)-d \cos (s) \\
-d \sin (s)+c \cos (s)
\end{array}\right], & \mathbf{c}^{\prime \prime}(s)=\left[\begin{array}{c}
-a \cos (s)+b \sin (s) \\
-b \cos (s)-a \sin (s) \\
-c \cos (s)+d \sin (s) \\
-d \cos (s)-c \sin (s)
\end{array}\right]
\end{array}
$$

for all $s \in \mathbb{R}$. Since $\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2}=1$ and $\left\langle\mathbf{c}^{\prime \prime}(s), \mathbf{c}(s)\right\rangle=-1$, then we can calculate

$$
\mathbf{c}^{\prime \prime}(s) \notin T_{\mathbf{c}(s)}\left(S^{3}(1)\right), \quad \mathbf{c}^{\prime \prime}(s) \in\{\alpha \cdot \mathbf{c}(s) \mid \alpha \in \mathbb{R}\}
$$

and $k(s)=0$ for all $s \in \mathbb{R}$. The curve C is a great circle on $S^{3}(1)$, but the curve C is not a C^{∞}-special Frenet curve on $S^{3}(1)$ since its curvature function vanishes.
Example 5. A C^{∞}-curve C on $S^{3}(1)$ is defined by $\mathbf{c}: \mathbb{R} \rightarrow S^{3}(1)$;

$$
\mathbf{c}(s)=\left[\begin{array}{l}
\frac{1}{\sqrt{3}} \cos \left(\frac{2 \sqrt{2}}{\sqrt{3}} s\right) \\
\frac{1}{\sqrt{3}} \sin \left(\frac{2 \sqrt{2}}{\sqrt{3}} s\right) \\
\frac{\sqrt{2}}{\sqrt{3}} \cos \left(\frac{1}{\sqrt{6}} s\right) \\
\frac{\sqrt{2}}{\sqrt{3}} \sin \left(\frac{1}{\sqrt{6}} s\right)
\end{array}\right]
$$

for all $s \in \mathbb{R}$. This curve C is a spherical Bertrand curve.
By the direct computation, we get

$$
\begin{aligned}
&\|\mathbf{c}(s)\|=1,\left\|\mathbf{c}^{\prime}(s)\right\|=1, \\
& \mathbf{c}^{\prime}(s)=\left[\begin{array}{c}
-\frac{2 \sqrt{2}}{3} \sin \left(\frac{2 \sqrt{2}}{\sqrt{3}} s\right) \\
\frac{2 \sqrt{2}}{3} \cos \left(\frac{2 \sqrt{2}}{\sqrt{3}} s\right) \\
-\frac{1}{3} \sin \left(\frac{1}{\sqrt{6}} s\right) \\
\frac{1}{3} \cos \left(\frac{1}{\sqrt{6}} s\right)
\end{array}\right], \quad \mathbf{c}^{\prime \prime}(s)=\left[\begin{array}{l}
-\frac{8}{3 \sqrt{3}} \cos \left(\frac{2 \sqrt{2}}{\sqrt{3}} s\right) \\
-\frac{8}{3 \sqrt{3}} \sin \left(\frac{2 \sqrt{2}}{\sqrt{3}} s\right) \\
-\frac{1}{3 \sqrt{6}} \cos \left(\frac{1}{\sqrt{6}} s\right) \\
-\frac{1}{3 \sqrt{6}} \sin \left(\frac{1}{\sqrt{6}} s\right)
\end{array}\right]
\end{aligned}
$$

for all $s \in \mathbb{R}$. Since $\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2}=\frac{43}{18}$ and $\left\langle\mathbf{c}^{\prime \prime}(s), \mathbf{c}(s)\right\rangle=-1$, then we obtain $\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2}-1=\frac{25}{18}$ for all $s \in \mathbb{R}$. Thus, we get

$$
k(s)=\frac{5}{3 \sqrt{2}}
$$

for all $s \in \mathbb{R}$. Next, we obtain

$$
\mathbf{c}^{\prime \prime \prime}(s)=\left[\begin{array}{c}
\frac{16 \sqrt{2}}{9} \sin \left(\frac{2 \sqrt{2}}{\sqrt{3}} s\right) \\
-\frac{16 \sqrt{2}}{9} \cos \left(\frac{2 \sqrt{2}}{\sqrt{3}} s\right) \\
\frac{1}{18} \sin \left(\frac{1}{\sqrt{6}} s\right) \\
-\frac{1}{18} \cos \left(\frac{1}{\sqrt{6}} s\right)
\end{array}\right], \quad\left\|\mathbf{c}^{\prime \prime \prime}(s)\right\|^{2}=\frac{683}{108}
$$

for all $s \in \mathbb{R}$. Thus we set

$$
\mathbf{e}_{1}(s)=\left[\begin{array}{c}
-\frac{2 \sqrt{2}}{3} \sin \left(\frac{2 \sqrt{2}}{\sqrt{3}} s\right) \\
\frac{2 \sqrt{2}}{3} \cos \left(\frac{2 \sqrt{2}}{\sqrt{3}} s\right) \\
-\frac{1}{3} \sin \left(\frac{1}{\sqrt{6}} s\right) \\
\frac{1}{3} \cos \left(\frac{1}{\sqrt{6}} s\right)
\end{array}\right], \quad \mathbf{e}_{2}(s)=\left[\begin{array}{c}
-\frac{\sqrt{2}}{\sqrt{3}} \cos \left(\frac{2 \sqrt{2}}{\sqrt{3}} s\right) \\
-\frac{\sqrt{2}}{\sqrt{3}} \sin \left(\frac{2 \sqrt{2}}{\sqrt{3}} s\right) \\
\frac{1}{\sqrt{3}} \cos \left(\frac{1}{\sqrt{6}} s\right) \\
\frac{1}{\sqrt{3}} \sin \left(\frac{1}{\sqrt{6}} s\right)
\end{array}\right],
$$

and

$$
|w(s)|=\frac{1}{k(s)} \sqrt{\left\|\mathbf{c}^{\prime \prime \prime}(s)\right\|^{2}-\left(k^{\prime}(s)\right)^{2}-\left\{1+(k(s))^{2}\right\}^{2}}=\frac{2}{3}
$$

for all $s \in \mathbb{R}$. Thus we get

$$
w(s)=\frac{2}{3} \varepsilon, \quad \varepsilon= \pm 1
$$

for all $s \in \mathbb{R}$. Then we obtain

$$
\frac{1}{k(s) w(s)}=\frac{9 \sqrt{2}}{10} \varepsilon, \quad \frac{1+(k(s))^{2}}{k(s) w(s)}=\frac{43 \sqrt{2}}{20} \varepsilon
$$

for all $s \in \mathbb{R}$. Therefore, we set

$$
\mathbf{e}_{3}(s)=\varepsilon\left[\begin{array}{c}
\frac{1}{3} \sin \left(\frac{2 \sqrt{2}}{\sqrt{3}} s\right) \\
-\frac{1}{3} \cos \left(\frac{2 \sqrt{2}}{\sqrt{3}} s\right) \\
-\frac{2 \sqrt{2}}{3} \sin \left(\frac{1}{\sqrt{6}} s\right) \\
\frac{2 \sqrt{2}}{3} \cos \left(\frac{1}{\sqrt{6}} s\right)
\end{array}\right]
$$

for all $s \in \mathbb{R}$. Thus we have

$$
\operatorname{det}\left[\mathbf{c}(s), \mathbf{e}_{1}(s), \mathbf{e}_{2}(s), \mathbf{e}_{3}(s)\right]=\varepsilon
$$

for all $s \in \mathbb{R}$. Since $\operatorname{det}\left[\mathbf{c}(s), \mathbf{e}_{1}(s), \mathbf{e}_{2}(s), \mathbf{e}_{3}(s)\right]=+1$, then we have $\varepsilon=+1$ for all $s \in \mathbb{R}$. Therefore, we obtain $k(s)=\frac{5}{3 \sqrt{2}}$ and $w(s)=\frac{2}{3}$.

Example 6. A C^{∞}-curve C on $S^{3}(1)$ is defined by $\mathbf{c}: \mathbb{R} \rightarrow S^{3}(1)$;

$$
\mathbf{c}(s)=\left[\begin{array}{c}
\cos \left(\frac{1}{\sqrt{3}} s\right) \cos \left(\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
\cos \left(\frac{1}{\sqrt{3}} s\right) \sin \left(\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
\sin \left(\frac{1}{\sqrt{3}} s\right) \cos \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
\sin \left(\frac{1}{\sqrt{3}} s\right) \sin \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)
\end{array}\right]
$$

for all $s \in \mathbb{R}$. This curve C is a spherical Bertrand curve.
By the direct computation, we get

$$
\begin{gathered}
\|\mathbf{c}(s)\|=1, \quad\left\|\mathbf{c}^{\prime}(s)\right\|=1, \\
\mathbf{c}^{\prime}(s)=\left[\begin{array}{c}
-\frac{1}{\sqrt{3}} \sin \left(\frac{1}{\sqrt{3}} s\right) \cos \left(\frac{\sqrt{2}}{\sqrt{3}} s\right)-\frac{\sqrt{2}}{\sqrt{3}} \cos \left(\frac{1}{\sqrt{3}} s\right) \sin \left(\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
-\frac{1}{\sqrt{3}} \sin \left(\frac{1}{\sqrt{3}} s\right) \sin \left(\frac{\sqrt{2}}{\sqrt{3}} s\right)+\frac{\sqrt{2}}{\sqrt{3}} \cos \left(\frac{1}{\sqrt{3}} s\right) \cos \left(\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
\frac{1}{\sqrt{3}} \cos \left(\frac{1}{\sqrt{3}} s\right) \cos \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)+\frac{\sqrt{2}}{\sqrt{3}} \sin \left(\frac{1}{\sqrt{3}} s\right) \sin \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
\frac{1}{\sqrt{3}} \cos \left(\frac{1}{\sqrt{3}} s\right) \sin \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)-\frac{\sqrt{2}}{\sqrt{3}} \sin \left(\frac{1}{\sqrt{3}} s\right) \cos \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)
\end{array}\right], \\
\mathbf{c}^{\prime \prime}(s)=\left[\begin{array}{c}
-\cos \left(\frac{1}{\sqrt{3}} s\right) \cos \left(\frac{\sqrt{2}}{\sqrt{3}} s\right)+\frac{2 \sqrt{2}}{3} \sin \left(\frac{1}{\sqrt{3}} s\right) \sin \left(\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
-\cos \left(\frac{1}{\sqrt{3}} s\right) \sin \left(\frac{\sqrt{2}}{\sqrt{3}} s\right)-\frac{2 \sqrt{2}}{3} \sin \left(\frac{1}{\sqrt{3}} s\right) \cos \left(\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
-\sin \left(\frac{1}{\sqrt{3}} s\right) \cos \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)+\frac{2 \sqrt{2}}{3} \cos \left(\frac{1}{\sqrt{3}} s\right) \sin \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
-\sin \left(\frac{1}{\sqrt{3}} s\right) \sin \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)-\frac{2 \sqrt{2}}{3} \cos \left(\frac{1}{\sqrt{3}} s\right) \cos \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)
\end{array}\right]
\end{gathered}
$$

for all $s \in \mathbb{R}$. Since $\left\|\mathbf{c}^{\prime \prime}(s)\right\|^{2}=\frac{17}{9}$, then we obtain

$$
k(s)=\frac{2 \sqrt{2}}{3}
$$

for all $s \in \mathbb{R}$. Next, we get

$$
\mathbf{c}^{\prime \prime \prime}(s)=\left[\begin{array}{c}
\frac{7}{3 \sqrt{3}} \sin \left(\frac{1}{\sqrt{3}} s\right) \cos \left(\frac{\sqrt{2}}{\sqrt{3}} s\right)+\frac{5 \sqrt{2}}{3 \sqrt{3}} \cos \left(\frac{1}{\sqrt{3}} s\right) \sin \left(\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
\frac{7}{3 \sqrt{3}} \sin \left(\frac{1}{\sqrt{3}} s\right) \sin \left(\frac{\sqrt{2}}{\sqrt{3}} s\right)-\frac{5 \sqrt{2}}{3 \sqrt{3}} \cos \left(\frac{1}{\sqrt{3}} s\right) \cos \left(\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
-\frac{7}{3 \sqrt{3}} \cos \left(\frac{1}{\sqrt{3}} s\right) \cos \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)-\frac{5 \sqrt{2}}{3 \sqrt{3}} \sin \left(\frac{1}{\sqrt{3}} s\right) \sin \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
-\frac{7}{3 \sqrt{3}} \cos \left(\frac{1}{\sqrt{3}} s\right) \sin \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)+\frac{5 \sqrt{2}}{3 \sqrt{3}} \sin \left(\frac{1}{\sqrt{3}} s\right) \cos \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)
\end{array}\right]
$$

and $\left\|\mathbf{c}^{\prime \prime \prime}(s)\right\|^{2}=\frac{11}{3}$ for all $s \in \mathbb{R}$. Therefore, we set

$$
\mathbf{e}_{1}(s)=\left[\begin{array}{c}
-\frac{1}{\sqrt{3}} \sin \left(\frac{1}{\sqrt{3}} s\right) \cos \left(\frac{\sqrt{2}}{\sqrt{3}} s\right)-\frac{\sqrt{2}}{\sqrt{3}} \cos \left(\frac{1}{\sqrt{3}} s\right) \sin \left(\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
-\frac{1}{\sqrt{3}} \sin \left(\frac{1}{\sqrt{3}} s\right) \sin \left(\frac{\sqrt{2}}{\sqrt{3}} s\right)+\frac{\sqrt{2}}{\sqrt{3}} \cos \left(\frac{1}{\sqrt{3}} s\right) \cos \left(\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
\frac{1}{\sqrt{3}} \cos \left(\frac{1}{\sqrt{3}} s\right) \cos \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)+\frac{\sqrt{2}}{\sqrt{3}} \sin \left(\frac{1}{\sqrt{3}} s\right) \sin \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
\frac{1}{\sqrt{3}} \cos \left(\frac{1}{\sqrt{3}} s\right) \sin \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)-\frac{\sqrt{2}}{\sqrt{3}} \sin \left(\frac{1}{\sqrt{3}} s\right) \cos \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)
\end{array}\right],\left[\begin{array}{l}
\sin \left(\frac{1}{\sqrt{3}} s\right) \sin \left(\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
\sin \left(\frac{1}{\sqrt{3}} s\right) \cos \left(\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
\cos \left(\frac{1}{\sqrt{3}} s\right) \sin \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
\cos \left(\frac{1}{\sqrt{3}} s\right) \cos \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)
\end{array}\right], ~\left[\begin{array}{l}
\mathbf{e}_{2}(s)=[
\end{array}\right]
$$

and

$$
|w(s)|=\frac{1}{k(s)} \sqrt{\left\|\mathbf{c}^{\prime \prime \prime}(s)\right\|^{2}-\left(k^{\prime}(s)\right)^{2}-\left\{1+(k(s))^{2}\right\}^{2}}=\frac{1}{3}
$$

for all $s \in \mathbb{R}$. Thus we obtain

$$
w(s)=\frac{1}{3} \varepsilon, \quad \varepsilon= \pm 1
$$

for all $s \in \mathbb{R}$. Then we get

$$
\frac{1}{k(s) w(s)}=\frac{9}{2 \sqrt{2}} \varepsilon, \quad \frac{1+(k(s))^{2}}{k(s) w(s)}=\frac{17}{2 \sqrt{2}} \varepsilon
$$

for all $s \in \mathbb{R}$. Therefore, we set

$$
\mathbf{e}_{3}(s)=\varepsilon\left[\begin{array}{r}
\frac{\sqrt{2}}{\sqrt{3}} \sin \left(\frac{1}{\sqrt{3}} s\right) \cos \left(\frac{\sqrt{2}}{\sqrt{3}} s\right)-\frac{1}{\sqrt{3}} \cos \left(\frac{1}{\sqrt{3}} s\right) \sin \left(\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
\frac{\sqrt{2}}{\sqrt{3}} \sin \left(\frac{1}{\sqrt{3}} s\right) \sin \left(\frac{\sqrt{2}}{\sqrt{3}} s\right)+\frac{1}{\sqrt{3}} \cos \left(\frac{1}{\sqrt{3}} s\right) \cos \left(\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
-\frac{\sqrt{2}}{\sqrt{3}} \cos \left(\frac{1}{\sqrt{3}} s\right) \cos \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)+\frac{1}{\sqrt{3}} \sin \left(\frac{1}{\sqrt{3}} s\right) \sin \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right) \\
-\frac{\sqrt{2}}{\sqrt{3}} \cos \left(\frac{1}{\sqrt{3}} s\right) \sin \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)-\frac{1}{\sqrt{3}} \sin \left(\frac{1}{\sqrt{3}} s\right) \cos \left(-\frac{\sqrt{2}}{\sqrt{3}} s\right)
\end{array}\right]
$$

for all $s \in \mathbb{R}$. Thus we have

$$
\operatorname{det}\left[\mathbf{c}(s), \mathbf{e}_{1}(s), \mathbf{e}_{2}(s), \mathbf{e}_{3}(s)\right]=-\varepsilon
$$

for all $s \in \mathbb{R}$. Since $\operatorname{det}\left[\mathbf{c}(s), \mathbf{e}_{1}(s), \mathbf{e}_{2}(s), \mathbf{e}_{3}(s)\right]=+1$, then we have $\varepsilon=-1$ for all $s \in \mathbb{R}$. Therefore, we obtain $k(s)=\frac{2 \sqrt{2}}{3}$ and $w(s)=-\frac{1}{3}$.

A C^{∞}-curve with constant curvature ratios is introduced in [12]. This curve is called a ccr-curve, briefly. The ccr-curve with constant extrinsic curvature ratios is proposed in the Euclidean space [12].

Example 7. A C^{∞}-special Frenet curve C on $S^{3}(1)$ is said to be a ccr-curve on $S^{3}(1)$ if its intrinsic curvature ratio $\frac{k}{w}$ is a constant number, where k and w are the curvature and the torsion of the curve C, respectively. Then we call the curve C "a ccr-curve on $S^{3}(1)$ ", briefly. The kind of ccr-curve on $S^{3}(1)$ is presented in [9] (Euler spirals or clothoids, n-clothoids, and generalized conical helices as the curvature and the torsion of each curve have some initial value). There are two cases that (1) ccr-curves on $S^{3}(1)$ have constant curvature k and torsion w, and (2) ccr-curves on $S^{3}(1)$ have non-constant curvature k and torsion w. In both cases, the ccr-curves on $S^{3}(1)$ are spherical Bertrand curves.

Let C^{∞}-curve C be a ccr-curve on $S^{3}(1)$ with constant intrinsic curvature ratio $\frac{k}{w}$ so that $k=c w$, where c is a constant number. If ccr-curve C is a spherical Bertrand curve, then the curve C satisfies the above differential equation $\frac{-k^{\prime} \sin (\theta)}{\cos (\theta)-k \sin (\theta)}=\frac{w^{\prime}}{w}(\dagger)$, where θ is the non-zero constant angle between the spherical Bertrand curve and the pair curve. By the differential equation $\frac{-k^{\prime} \sin (\theta)}{\cos (\theta)-k \sin (\theta)}=\frac{w^{\prime}}{w}(\dagger)$ satisfying $k=c w$, it is easy to get the following equation

$$
k^{\prime} \cos (\theta)=0
$$

(1) If both $k^{\prime}=0$ and $\cos (\theta)=0$, then k and $w(=k / c)$ are constant numbers and there exists a pair curve of the curve C with $\theta=\pi / 2$ between the curve C and the pair curve of C. If $k^{\prime}=0$ and $\cos (\theta) \neq 0$, then k and w are constant numbers and there exist pair curves of the curve C with $\theta \neq \pi / 2$ between the curve C and one of the pair curves
of C. Therefore, ccr-curve C on $S^{3}(1)$ with constant curvature k and torsion w is a spherical Bertrand curve.
(2) If $k^{\prime} \neq 0$ and $\cos (\theta)=0$, then k / w is a constant number and there exists a pair curve of the curve C with $\theta=\pi / 2$ between the curve C and the pair curve of C. Therefore, the ccr-curve C on $S^{3}(1)$ with non-constant curvature k and torsion w is a spherical Bertrand curve.
In the case of n-clothoid : A C^{∞}-special Frenet curve C on $S^{3}(1)$ is said to be an n-clothoid with its curvature and torsion given by

$$
k(s)=\alpha+\beta s^{n}, \quad w(s)=\gamma+\delta s^{n} \quad \text { for } s \geq 0
$$

where α, β, γ, and δ are positive constants and n is a positive integer [9]. For a positive constant c, if both $\gamma=c \alpha$ and $\delta=c \beta$, then it is trivial that the n-clothoid C is a ccr-curve on $S^{3}(1)$. We have $\lambda-\mu k(s)=\nu w(s)(s \geq 0)$ with $\lambda=0, \mu=1$ and $\nu=-\frac{1}{c}$. Thus the curve C is a spherical Bertrand curve.
Now, we provide a spherical curve but not a spherical Bertrand curve.
Example 8. A C^{∞}-curve C on $S^{3}(1)$ is defined by $\mathbf{x}: \mathbb{R} \rightarrow S^{3}(1)$;

$$
\mathbf{x}(t)=\left[\begin{array}{c}
\cos (3 t) \cos (t) \\
\cos (3 t) \sin (t) \\
\sin (3 t) \cos (2 t) \\
\sin (3 t) \sin (2 t)
\end{array}\right], \quad t \in[0,2 \pi]
$$

for all $t \in \mathbb{R}$. This curve C is not a spherical Bertrand curve.
By the direct computation, we get

$$
\begin{gathered}
\|\mathbf{x}(t)\|=1 \\
\dot{\mathbf{x}}(t)=\left[\begin{array}{c}
-3 \sin (3 t) \cos (t)-\cos (3 t) \sin (t) \\
-3 \sin (3 t) \sin (t)+\cos (3 t) \cos (t) \\
3 \cos (3 t) \cos (2 t)-2 \sin (3 t) \sin (2 t) \\
3 \cos (3 t) \sin (2 t)+2 \sin (3 t) \cos (2 t)
\end{array}\right]
\end{gathered}
$$

and

$$
\|\dot{\mathbf{x}}(t)\|^{2}=10+3 \sin ^{2}(3 t)
$$

Then we obtain

$$
\ddot{\mathbf{x}}(t)=\left[\begin{array}{c}
-10 \cos (3 t) \cos (t)+6 \sin (3 t) \sin (t) \\
-10 \cos (3 t) \sin (t)-6 \sin (3 t) \cos (t) \\
-13 \sin (3 t) \cos (2 t)-12 \cos (3 t) \sin (2 t) \\
-13 \sin (3 t) \sin (2 t)+12 \cos (3 t) \cos (2 t)
\end{array}\right]
$$

and

$$
\begin{aligned}
\langle\dot{\mathbf{x}}(t), \ddot{\mathbf{x}}(t)\rangle & =9 \sin (3 t) \cos (3 t) \\
\langle\ddot{\mathbf{x}}(t), \ddot{\mathbf{x}}(t)\rangle & =244-39 \sin ^{2}(3 t)
\end{aligned}
$$

We calculate

$$
\begin{aligned}
& \langle\dot{\mathbf{x}}(t), \dot{\mathbf{x}}(t)\rangle\langle\ddot{\mathbf{x}}(t), \ddot{\mathbf{x}}(t)\rangle-(\langle\dot{\mathbf{x}}(t), \ddot{\mathbf{x}}(t)\rangle)^{2}-(\langle\dot{\mathbf{x}}(t), \dot{\mathbf{x}}(t)\rangle)^{3} \\
& \quad=9\left(160-71 \sin ^{2}(3 t)-34 \sin ^{4}(3 t)-3 \sin ^{6}(3 t)\right),
\end{aligned}
$$

then we get the curvature $k(t)$ is

$$
\begin{aligned}
k(t) & =\frac{\sqrt{\langle\dot{\mathbf{x}}(t), \dot{\mathbf{x}}(t)\rangle\langle\ddot{\mathbf{x}}(t), \ddot{\mathbf{x}}(t)\rangle-(\langle\dot{\mathbf{x}}(t), \ddot{\mathbf{x}}(t)\rangle)^{2}-(\langle\dot{\mathbf{x}}(t), \dot{\mathbf{x}}(t)\rangle)^{3}}}{(\langle\dot{\mathbf{x}}(t), \dot{\mathbf{x}}(t)\rangle)^{\frac{3}{2}}} \\
& =\frac{3 \sqrt{160-71 \sin ^{2}(3 t)-34 \sin ^{4}(3 t)-3 \sin ^{6}(3 t)}}{\left(10+3 \sin ^{2}(3 t)\right) \sqrt{10+3 \sin ^{2}(3 t)}}
\end{aligned}
$$

Next, we obtain

$$
\dddot{\mathbf{x}}(t)=\left[\begin{array}{c}
36 \sin (3 t) \cos (t)+28 \cos (3 t) \sin (t) \\
36 \sin (3 t) \sin (t)-28 \cos (3 t) \cos (t) \\
-63 \cos (3 t) \cos (2 t)+62 \sin (3 t) \sin (2 t) \\
-63 \cos (3 t) \sin (2 t)-62 \sin (3 t) \cos (2 t)
\end{array}\right]
$$

then we have

$$
\operatorname{det}[\mathbf{x}(t), \dot{\mathbf{x}}(t), \ddot{\mathbf{x}}(t), \dddot{\mathbf{x}}(t)]=18\left(14+23 \sin ^{2}(3 t)+\sin ^{4}(3 t)\right)
$$

Thus we get the curvature $w(t)$ is

$$
\begin{aligned}
w(t) & =\frac{\operatorname{det}[\mathbf{x}(t), \dot{\mathbf{x}}(t), \ddot{\mathbf{x}}(t), \dddot{\mathbf{x}}(t)]}{\langle\dot{\mathbf{x}}(t), \dot{\mathbf{x}}(t)\rangle\langle\ddot{\mathbf{x}}(t), \ddot{\mathbf{x}}(t)\rangle-(\langle\dot{\mathbf{x}}(t), \ddot{\mathbf{x}}(t)\rangle)^{2}-(\langle\dot{\mathbf{x}}(t), \dot{\mathbf{x}}(t)\rangle)^{3}} \\
& =\frac{2\left(14+23 \sin ^{2}(3 t)+\sin ^{4}(3 t)\right)\left(10+3 \sin ^{2}(3 t)\right)^{3}}{160-71 \sin ^{2}(3 t)-34 \sin ^{4}(3 t)-3 \sin ^{6}(3 t)}
\end{aligned}
$$

By the above differential equation $\frac{-k^{\prime} \sin (\theta)}{\cos (\theta)-k \sin (\theta)}=\frac{w^{\prime}}{w}(\dagger)$, we conclude any constant angle θ does not exist. Therefore, this curve C is not a spherical Bertrand curve.
Problem. Are above curves $(1,3)$-Bertrand curves in \mathbb{R}^{4} ?
Acknowledgements. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2011-0012987). The authors are very grateful to the referee for the insightful suggestion that helped to improve the paper.

References

[1] Yu. Aminov, Differential Geometry and Topology of Curves, Gordon and Breach Science Publishers, Amsterdam, 2000.
[2] , The Geometry of Submanifolds, Gordon and Breach Science Publishers, Amsterdam, 2001.
[3] H. Balgetir, M. Bektas, and J.-I. Inoguchi, Null Bertrand curves in Minkowski 3-space and their characterizations, Note Mat. 23 (2004), no. 1, 7-13.
[4] P. A. Blaga, Lectures on the Differential Geometry of Curves and Surfaces, Napoca Press, 2005.
[5] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, NJ. 1976.
[6] N. Ekmekci and K. Ilarslan, On Bertrand curves and their characterization, Differ. Geom. Dyn. Syst. 3 (2001), no. 2, 17-24.
[7] C.-C. Hsiung, A First Course in Differential Geometry, International Press, Cambridge, MA. 1997.
[8] S. Izumiya and N. Takeuchi, Generic properties of helices and Bertrand curves, J. Geom. 74 (2002), no. 1-2, 97-109.
[9] P. Lucas and J. A. Ortega-Yagües, Bertrand curves in the three-dimensional sphere, J. Geom. Phys. 62 (2012), no. 9, 1903-1914.
[10] H. Matsuda and S. Yorozu, Notes on Bertrand curves, Yokohama Math. J. 50 (2003), no. 1-2, 41-58.
[11] R. S. Millman and G. D. Parker, Elements of Differential Geometry, Prentice-Hall Inc, 1977.
[12] J. Monterde, Curves with constant curvature ratios, Bol. Soc. Mat. Mexicana (3) 13 (2007), no. 1, 177-186.
[13] L. R. Pears, Bertrand curves in Riemannian space, J. London Math. Soc. (1935), no. 2, 180-183.
[14] W. K. Schief, On the integrability of Bertrand curves and Razzaboni surfaces, J. Geom. Phys. 45 (2003), no. 1-2, 130-150.

Chan Yong Kim
Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Korea
E-mail address: intcomplex@skku.edu
JeongHyeong Park
Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Korea
E-mail address: parkj@skku.edu
Sinsuke Yorozu
Department of Mathematics
Miyagi University of Education
Sendai, Miyagi, 980-0845, Japan
E-mail address: s-yoro@staff.miyakyo-u.ac.jp

