• 제목/요약/키워드: (첨단재료)

검색결과 2,105건 처리시간 0.022초

Adaptive movement가 twisted file의 내구성과 작업 시간에 미치는 영향 (Effect of adaptive movement on durability and working time of twisted file)

  • 이상호;박소라;조경모;박세희;김진우
    • 구강회복응용과학지
    • /
    • 제35권1호
    • /
    • pp.20-26
    • /
    • 2019
  • 목적: Wire를 꼬아서 제조한 twisted file (TF)이 개발된 이래, 최근에는 기존 twisted file의 내구성 및 절삭 효과를 증진시키기 위하여 구동방식의 변형을 준 TF-adaptive movement가 소개되었다. 본 연구의 목적은 TF-adaptive movement가 twisted file의 내구성에 미치는 영향을 조사하는 것이다. 연구 재료 및 방법: J자 모양의 근관 형태를 가지는 레진 모형 근관에 twisted file을 이용하여 근관 형성 시 adaptive movement (TFA군)와 continuous rotation movement (TFC군)의 두 가지 구동 방식 하에서 파일의 내구성을 비교하고, 각각의 모형 근관을 형성하는데 소요된 시간을 측정하였다. TF 파일을 사용할 때마다 치과용 현미경으로 TF의 날풀림(unwind) 또는 변형 및 파절 여부를 관찰하여 그때까지 TF로 형성한 모형 근관의 수를 기록하고, 사진을 촬영하였다. 또한 twisted file의 첨단(D0)에서 날풀림이 발생한 지점까지의 직선 거리를 측정했다. 실험 결과는 0.05의 유의수준에서 Mann-Whitney U test로 분석했다. 결과: 파일의 파절은 두 실험군 모두에서 발생하지 않았으며, TFC군은 TFA군에 비하여 날풀림이 발생하기 전까지 형성한 모형 근관의 수가 통계적으로 유의하게 적었으며, 모형 근관을 작업장까지 성형, 확대하는데 걸린 시간은 TFA군이 TFC군에 비해 유의하게 길었다. 날풀림이 발생한 지점의 위치는 TFC군과 TFA군 사이에 유의한 차이가 발견되지 않았다. 결론: Twisted file을 adaptive movement mode로 사용하여 근관을 형성하면 날풀림이 발생하기 전까지 확대할 수 있는 근관의 수가 증가했으나, 작업장까지 근관을 형성하는데 필요한 시간이 유의하게 증가했다. Adaptive movement와 continuous rotary movement 간에 기구의 날풀림이 발생하는 위치에는 유의한 차이가 발견되지 않았다.

단일 수복물과 3본 고정성 수복물 지대치 모델에서 삼차원 분석을 통한 구강 스캐너의 정확도 비교 (Comparison of the accuracy of intraoral scanner by three-dimensional analysis in single and 3-unit bridge abutment model: In vitro study)

  • 황미양;손큰바다;이완선;이규복
    • 대한치과보철학회지
    • /
    • 제57권2호
    • /
    • pp.102-109
    • /
    • 2019
  • 목적: 이 연구의 목적은 단일 수복물 지대치와 3본 고정성 수복물 지대치 모델에서 3종류의 구강 스캐너에 따른 정확도를 평가하는 것이다. 재료 및 방법: 본 연구에서는 단일 수복물 지대치와 제1대구치가 상실된 3본 고정성 수복물 지대치를 제작하고, 이를 주모형으로 설정하였다. 제작된 주 모형은 산업용 삼차원 스캐너로 스캔하였고, 이를 참조 스캔 데이터로 설정하였다. 3종류의 구강 스캐너(CS3600, CS3500, 그리고 EZIS PO)를 이용하여 주 모형을 5회 스캔 하였다. 이를 평가 스캔 데이터로 설정하였다. 삼차원 비교분석(Geomagic control X)에서 지대치의 스캔 정확도를 평가하기 위해 분할된 지대치를 선택하여 분석하였다. 통계분석은 SPSS 소프트웨어를 이용하여 분석하였다 (${\alpha}=.05$). 구강 스캐너 정확도는 kruskal-wallis test를 실시하여 비교하였고, pairwise test로 사후 검정을 실시하였다. 단일 수복물 지대치 모델과 3본 고정성 수복물 지대치 모델의 정확도 차이는 mann-whitney U test로 분석하였다. 결과: 구강 스캐너에 따른 정확도의 측정결과는 모두 유의한 차이를 보였다 (P < .05). 그리고 단일 수복물 지대치 모델과 3본 고정성 수복물 지대치 모델의 진도(trueness)는 통계적으로 유의한 차이를 보여주었으며, 단일 수복물 지대치에서 더 좋은 진도를 나타냈다 (P < .05). 정밀도(precision)에서는 유의미한 차이가 없었다 (P = .616). 결론: 단일 수복물과 3본 고정성 수복물 지대치의 정확도를 비교한 결과, 스캔 영역이 늘어날수록 지대치 스캔의 오류는 증가하였고, 3종류의 구강 스캐너에서 3본 고정성 수복물 지대치 모델의 스캔 정확도는 임상적으로 허용 가능하다.

혼합방법에 따른 순환아스팔트 혼합물의 수분저항성 통계검정 평가 (Statistical Evaluation of Moisture Resistance by Mixing Method of Recycled Asphalt Mixtures)

  • 김성운;김영삼;조영진;김광우
    • 한국건설순환자원학회논문집
    • /
    • 제9권2호
    • /
    • pp.167-176
    • /
    • 2021
  • 순환아스팔트 혼합물은 제조 시 믹서에서 혼합되는 동안 노화된 RAP(회수 아스팔트포장재)을 잘 녹이는 것이 중요하다. 순환아스팔트 혼합물은 모든 재료(RAP, 신규 아스팔트 및 신규 골재)를 동시에 믹서에 넣고 혼합하여 생산한다. 동시 혼합(IM)방법으로 제조된 순환아스팔트 혼합물의 경우 RAP에 포함된 노화된 바인더는 신규 바인더와 혼합되는 동안 적절하게 회생되지 못하기 때문에 동일한 혼합물 내에서 신규 골재 주위에 코팅된 바인더보다 더 높은 산화·노화 수준을 나타내며, 큰 강성을 보인다. 본 연구에서는 RAP의 노화된 바인더를 회생시키기 위해서 단계 혼합(SM) 방법을 적용하였다. 첫 번째 단계에서는 RAP과 신규 아스팔트를 혼합한 다음 두 번째 단계에서는 가열된 신규 골재와 함께 혼합하였다. 혼합 방법에 따른 순환아스팔트 혼합물의 수분저항성 개선효과를 비교하기 위해 간접인장강도(ITS)와 인장강도 비(TSR) 시험을 수행하여 SM 방법과 IM 방법 간에 통계적 t- 테스트를 수행했다. 수분저항성을 평가하기 위해서 세 가지 전처리 조건 즉, -18℃ 동결 후 60℃에서 24 시간 수침, 60℃에서 48 시간 수침 및 60℃에서 72 시간 수침 조건을 적용하였다. SM 방법으로 제조한 순환아스팔트 혼합물의 TSR은 IM 방법에 의한 순환아스팔트 혼합물보다 분명히 높았고, SM 방법의 변동계수는 IM보다 낮았다. 또한 통계적 t-test에 의해 SM 방법의 ITSWET이 α = 0.05 수준에서 IM과 유의하게 다른 것으로 관찰되었다. 또한, SM 방법의 ITSWET은 IM과 비교하여 더 가혹한 조건에서 처리할수록 훨씬 개선된 결과를 나타냈다. 따라서 단계 혼합 방법은 기존의 동시 혼합방법으로 생산된 순환아스팔트 혼합물보다 더 높은 수분저항성을 보이고, 보다 더 우수한 순환아스팔트 혼합물을 생산하기 위한 중요한 혼합 방법임을 확인하였다.

목본식물(木本植物)의 약배양(葯培養)에 관(關)한 연구(硏究) (Studies on the Anther Culture of Some Woody Species)

  • 김재생
    • 한국산림과학회지
    • /
    • 제13권1호
    • /
    • pp.25-39
    • /
    • 1971
  • 약배양(葯培養)에 의(依)한 반수체식물(半數體植物)의 유기(誘起)가 돌연변이(突然變異), 유전학등(遺傳學等)의 기초연구(基礎硏究)나 실지육종사업(實地育種事業)에 혁신(革新)을 갖져올 수 있다는 사실(事實)이 알려지자 최근(最近) 2-3년간(年間) 이에 대(對)하여 많은 연구(硏究)가 시도(試圖)되었지만 현재(現在)까지 성공(成功)된 식물(植物)의 종류(種類)는 수종(數種)에 불과(不過)하다. 식물(植物)의 여러조직배양법(組織培養法) 중(中)에서도 약배양(葯培養)이 특(特)히 힘든것은 이 경우(境遇)에는 환원소포자(還元小胞子)에서 Callus가 embryoid를 유기(誘起)하여야만 되기 때문이다. 과수(果樹)와 화목류(花木類) 4속(屬) 7종(種)의 식물(植物)을 대상(對象)으로 약배양(葯培養)을 시도(試圖)하였다. 배양약(培養葯)은 대개(大槪) 4분자(分子)에서 늦은 소포자기(小胞子期)의 것을 혼합(混合)하여 사용(使用)하였고 배양기(培養基)는 Modified murashige and skoog의 배지(培地)를 기본배지(基本培地)로 하고 여기에 NAA, $2{\cdot}4$-D, YE, Kinetin등(等) 생장조절물질(生長調節物質)을 농도(濃度)와 조합(組合)을 달리한것을 첨가(添加)하여 만들었다. 재료(材料)의 취급(取扱), 멸균배양(滅菌培養)에 따른 여러조작(操作), 조직표본작성등(組織標本作成等) 모든것은 상법(常法)에 의(依)하였다. 이제 성적(成績)을 요약(要略)하면 다음과 같다. 1. Callus는 개나리, 진달래, 산철쭉, 살구 등(等)에서 형성(形成)되었고 복숭아, 배, 자두에서는 안생긴다. 2. Auxin Kinetin의 종류(種類)와 농도(濃度)를 달리한 여러 배양기(培養基)를 사용(使用)하였지만 Callus형성(形成)은 어느 것에서나 잘된다. 3. 개나리에서는 Callus는 약표면(葯表面), 약격부위(葯隔部位)에서 체세포기원(體細胞起源)의 2배성(倍性) Callus가 생기고 소포자(小胞子)에서는 안생긴다. 오래 배양(培養)된 소포자(小胞子)에서는 대부분(大部分) 전분(澱粉)이 축적(蓄積)된다. 4. 진달래에서는 화사(花絲), 약격(葯隔), 약내동(葯內童) 등(等)에서 체세포성(體細胞性) Callus가 형성(形成)되고 소포자기원(小胞子期源)의 Callus는 안생기고 소포자(小胞子)에는 전분(澱粉)이 축적(蓄積)된다. 5. 산철쭉은 Callus형성(形成)이 화사(花絲), 약격등(葯隔等)에서도 생기지만 주(主)로 화사반대편(花絲反對便)의 약이첨단(葯耳尖端)에서 잘생긴다. 소포자기원(小胞子期源)의 Callus는 안생기고 소포자(小胞子) 전분(澱粉)이 축적(蓄積)되는 점(點)은 진달래와 같다. 6. 살구는 체세포성(體細胞性) 약조직기원(葯組織起源)의 Callus는 거이 안생기고 Callus는 약강내부(葯腔內部)에서 형성(形成)되어 약봉합부(葯縫合部)를 헤치고 나온다. 오래 배양(培養)된 소포자(小胞子)에도 전분(澱粉)은 축적(蓄積)되지 않는다. 7. 복숭아, 배, 자두 들에서는 60여일배양(餘日培養)된 약(葯)의 어느 부위(部位)에서도 Callus는 형성(形成)되지 않는다. 반면(反面) 소포자(小胞子)에 전분축적(澱粉蓄積)도 안되는것이 특징(特徵)이다. 8. 체세포(體細胞) Callus는 주(主)로 약벽내피(葯壁內被), 두 약강(葯腔)사이의 격막(隔膜), 약격(葯隔) 및 약이유조직등(葯耳柔組織等)에서 생긴다. 9. 살구의 약조직(葯組織)은 배양중(培養中) 별(別)로 변화(變化)가 안되지만 소포자(小胞子)는 변화(變化)하야 다핵소포자(多核小胞子), 다조포체(多組胞體)들이 약강내(葯腔內)에 출현(出現)한다. 이런 현상(現像)은 살구의 Callus는 소포자기원(小胞子期源) 이라는것을 표시(表示)해준다. 10. 7종(種)의 식물중(植物中) 살구만은 환원성(還元性) 소포자(小胞子) Callus가 생기고 기타(基他)의 식물(植物)들은 약(葯)의 체세포성(體細胞性) 조직(組織)에서 Callus가 형성(形成)되기 때문에 반수체육종(半數體育種)의 가능성(可能性)은 살구에서만 있다.

  • PDF

솔나방의 시맥(翅脈)과 인편(鱗片)에 관(關)한 연구(硏究) (I) (On the wing venation and scales of Dendrolimus spectabilis Butler (I))

  • 윤정구
    • 한국산림과학회지
    • /
    • 제2권1호
    • /
    • pp.59-65
    • /
    • 1962
  • 솔나방의 지역적(地域的)인 변이(變異)(변이(變異)가 있다면)를 구명(究明)하고자 우선 수원지방산(水原地方産)의 솔나방을 재료(材料)로서 자아(雌蛾) 30 웅아(雄蛾) 15의 45개체(個體)를 채집(採集)하여 시맥(翅脈)과 인편(鱗片)에 대(對)한 형태적(形態的)인 관찰(觀察)을 하여 보았다. 시맥(翅脈)은 개체(個體) 자아(雌蛾) 좌우(左右) 및 전후시별(前後翅別)로 10배(培)의 해부현미경(解剖顯微鏡)과 100배(培)의 현미경(顯微鏡)으로서 관찰(觀察)하였으며 인편(鱗片)의 형태(形態)와 크기 조사(調査)는 자웅아(雌雄蛾) 각(各) 15개체(個體)에 대(對)하여 날개의 전면(全面)에서 Sample을 취(取)하고 부위별(部位別) 분포(分布)와 색채차(色彩差)의 원인(原因)을 구명(究明)하는데는 자아(雌蛾) 30개체(個體)의 전시동위치(前翅同位置)에서 Sample을 취(取)하여 100배(培)의 현미경(顯微鏡)으로서 관찰(觀察)하고 인편(鱗片)의 크기는 Micrometer를 사용(使用)하여 측정(測定)하였다. 길이의 측정(測定)은 소병(小柄)의 하편(下篇)으로부터 열편(裂片)의 상단(上端)까지를 측정(測定)하였으며 폭(幅)에 있어서는 분기(分岐)된 부분(部分)을 측정(測定)하였다. 시맥(翅脈)과 인편(鱗片)에 대(對)한 고찰(考察)의 결과(結果)는 다음과 같다. (1) 시맥(翅脈)은 개체(個體) 자웅(雌雄) 및 좌우문(左右問)의 변이(變異)는 볼 수 없었으며 동일개체(同一個體)의 전후시(前後翅)에서만이 달랐다. 전시맥상(前翅脈相)은 13개(個)의 종맥(縱脈)과 5~6 맥간(脈間)에 단 1 개의 "V"형(形) 횡맥(橫脈)으로 구성(構成)되었으며 후시맥상(後翅脈相)은 9개(個)의 종맥(縱脈)과 단 1개의 "V"형(形) 횡맥(橫脈)으로 구성(構成)되었다. (2) 인편(鱗片)의 형(型)은 채태적(彩態的)으로 보아 4Group으로 구분(區分)되었다. I Group은 단형(短形)의 인편(鱗片)으로 하방부(下方部)가 원형(圓形)에 근사(近似)하고 소병(小柄)이 돌출(突出)하여 있으며 인편(鱗片)의 상방부(上方部)가 그 열편(裂片)으로부터 10열편(裂片)으로 되어 있는데 열편(裂片)의 첨두상(尖頭上)에 세모(細毛)가 부착한 것과 부착하지 않은 것이 있다. II Group은 I Group보다 장형(長形)의 인편(鱗片)으로 하방부(下方部)의 형(形)은 I Group과 같으나 크기의 변화(變化)는 더욱 심(甚)하며 그 열편(裂片)으로부터 10열편(裂片)으로 되어 있다. III Group은 대부분(大部分)이 장형(長形)의 인편(鱗片)으로 하방부(下方部)가 장삼각형(長三角形)(장설형(長楔形))에 근사(近似)한 예저(銳底)이며 그 열편(裂片)으로부터 10열편(裂片)으로 되어 있고 열편(裂片)의 첨두상(尖頭上)에 장세모(長細毛)가 부착하여 있는 것이 특징(特徵)이며 또한 세모(細毛)가 없고 열편자체(裂片自體)가 장형(長形)인 것이 있다. IV Group은 장태(長彩)의 인편(鱗片)으로 하방부(下方部)가 III Group와 같이 예저(銳底)이나 열편(裂片)이 두소(短小)하고 첨단(尖端)이 순(純)한 것이 특징(特徵)으로 되어 있으며 그 열편(裂片)으로부터 9 열편(裂片)으로 되어 있다. (3) 인편(鱗片)의 부위별(部位別) 분포(分布)는 I II Group은 외연(外緣)을 제외(除外)한 전면(全面)에 분포(分布)되어 있으며 III Group은 시저부근(翅底附近)에 대부분(大部分) 분포(分布)되었고 IV Grup은 외연(外緣)에만 분포(分布)를 보였다. 열편(裂片)을 중심(中心)으로하여 보면 Group와 부위(部位)를 막론하고 대개 4 5 열편(裂片)을 가진 인편(鱗片)의 분포(分布)가 많았다. (4) 인편(鱗片)길이의 변화(變化)는 I Group에 있어서는 열편(裂片)이 다수(多數) 일수록 점점 증대(增大)되나 II III IV Grop 에서는 반대(反對)로 점점 감소(減少)된다. 폭(幅)의 변화(變化)에 있어서는 Group을 막론하고 변화가 그리 심(甚)하지는 않으나 열편(裂片)이 다수(多數) 일수록 인편자체(鱗片自體)의 폭(幅)은 넓어진다. (5) 날개의 색채(色彩)는 인편자체(鱗片自體)의 색소(色素)에 의(依)한 색소(色素) 색(色)으로서 갈색인편(褐色鱗片)과 백색인편(白色鱗片)의 혼합량(混合量)에 따라 색채(色彩)를 나타내고 있다.

  • PDF