• Title/Summary/Keyword: %24CO_2%24decomposition

Search Result 34, Processing Time 0.033 seconds

Effect of Cryogenic Treatment on the Phase Change and Mechanical Property in STD11 steel for Die and Tool (STD11강의 상변화 및 기계적 성질에 미치는 초심냉처리의 영향)

  • Kim, H.J.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.3
    • /
    • pp.139-145
    • /
    • 2015
  • Effects of austenitizing, cryogenic treatment and tempering conditions on the phase change, microstructure and Vickers hardness value have been studied in STD11 steel for tool and die. The volume fraction of retained austenite increased with a rise in austenitizing temperature, while the volume fraction of eutectoid $M_7C_3$ carbides decreased. The retained austenite could be reduced by cryogenic treatment i.e., maintaining at $LN_2$ temperature ($-196^{\circ}C$) for 12hrs but a little amount of retained austenite did not transform to martensite further although holding time increased to 24 hrs or more. The microstructure of the quenched and then cryogenictreated specimen showed nano-sized and needle-shaped carbides in matrix due to the decomposition of martensite by tempering, but that of the one without cryogenic treatment still revealed retained austenite by tempering even at $500^{\circ}C$.

Natural Background and Enrichment Characteristics of the Stream Sediments from the Hamyang-Sancheong Area (함양-산청지역 하상퇴적물의 자연배경치 및 부화특성)

  • Park, Young-Seog;Park, Dae-Woo;Kim, Jong-Kyun
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.195-206
    • /
    • 2009
  • We investigated natural background and enrichment characteristics and predicted geochemical disaster for stream sediments in the Hamyang-Sancheong area. Stream sediments samples were collected 95 ea in study area. The stream sediments were well known that had not possibility of contamination effect and represented drainage basins. We got the major and hazardous elements concentrations by XRF, ICP-AES and NAA analysis methods. Acid decomposition for the ICP-AES has been used $HClO_4$ and HF with $200^{\circ}C$ heating at 1st and after that $HClO_4$ HF and HCl with $200^{\circ}C$ heating at 2nd stage. We could know the characteristics that concentration of Cu and Co decreased when concentration of $SiO_2$ increased in correlation analysis. The enrichment factor of the stream sediments was below 2 in study area. This result indicated that study area belonged to moderate enrichment. The stream sediments of Hamyang area were enriched in order of Pb>Th>Cr>V>Co>Cu and those of Sancheong area were enriched in order of Pb>Th>Cr>Co>V>Cu. The enrichment factor(E.F.) of the Pb, Cr, Co and V was similar between Hamyang and Sancheong area. The enrichment factor of the Th was higher in Hamyang area and that of the Cu was higher in Sancheong area. The enrichment factor of the Pb was highly enriched in all study area than earth crust mean. But we could know that study area was not exposed to the pollution of the Pb through the tolerable level.

Studies on Reaction Parameters for Composting of Paper Mill Sludge in a Small-Scale Reactor and Static Piles (제지슬럿지의 퇴비화를 위한 반응변수 연구)

  • Han, Shin Ho;Chung, Young Ryun;Cho, Cheon Hee;Kang, Moon Hee;Oh, Say Kyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.2
    • /
    • pp.19-29
    • /
    • 1994
  • A large volume of paper mill sludge(PMS) is produced every day from paper industries after treatments of waste water and it costs too much to dispose of the sludge. Since PMS consists mostly of biodegradable organic matter, cellulose, it is desirable to recycle it by proper treatments such as composting. In this study, experiments were conducted using a small scale reactor(12l) to establish optimum conditions for efficient composting of PMS of which initial pH, C/N ratio, and moisture content were 7.1, 28~30, and 60~65%, respectively. No heavy metals such as mercury, cadmimum, and lead were not detected in the PMS. Various levels of forced aeration, 1 minute aeration per every 30, 60, 120, 240, and 480 minutes were applied and 1 minute aeration per 60 and 120 minutes found to be proper for composting of 8l PMS in this system. Relationship between $CO_2$ production and temperatures was positively correlated with r> 0.82 suggesting that the normal decomposition of PMS by microorganisms occurred. However, under the condition of aeration interval over than 240 minutes, a negative relationship between two parameters was found indicating the occurrence of abnormal(maybe anaerobic) degradation. The amount of added nitrogen also affected composting of PMS resulting in the increase of $CO_2$ production and temperature. Semi-field tests using 100kg PMS in a static pile sysem showed that PMS could be composted efficiently under optimal environmental conditions. The parameters determining efficiency of composting such as C/N ratio, aeration, moisture content, and pH need to be monitored.

  • PDF

Assessment of organic matter biodegradation and physico-chemical parameters variation during co-composting of lignocellulosic wastes with Trametes trogii inoculation

  • Fersi, Mariem;Mbarki, Khadija;Gargouri, Kamel;Mechichi, Tahar;Hachicha, Ridha
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.670-679
    • /
    • 2019
  • Lignin complexity molecule makes its biodegradation difficult during lignocellulosic wastes composting. So, the improvement of its biodegradation has usually been considered as an objective. This study aimed to determine the impact of Trametes trogii inoculation on organic matter and particularly on lignin and cellulose during green wastes co-composting with olive mill waste water sludge and coffee grounds. Three types of heaps (H1, H2 and H3) were investigated during 180 d. H3 and H2 were inoculated at the beginning of the process (t0) and 120 d later (t120), respectively while H1 was the control. Results showed the absence of pH stabilization in H3 during the first month. Also, in this period we observed a faster degradation of some easily available organic matter in H3 than in the other heaps. After 120 d, a better cellulose decomposition (25.28%) was noticed in H3 than in H1 and H2 (16%). Inoculation during the second fermentation phase induced supplementary lignin degradation in H2 with a percentage of 35% against 23 and 26% for H1 and H3, respectively. For all the runs, a Fourier Transform Infrared analysis showed aliphatic groups' decrease, OH groups' increase and lignin structural modification.

A Study on the Efficiency Estimation of Halogen free Fire Resistance Cable (저독성 내화전선 케이블의 성능평가에 관한 연구)

  • 윤헌주;홍진웅;유동일;윤재선;곽동일
    • Fire Science and Engineering
    • /
    • v.16 no.1
    • /
    • pp.18-23
    • /
    • 2002
  • Efficiency estimation of toxicity free resistance cable experiments were conducts to understand toxicity free fire ersistance polyolefin insulation material and smoke density characteristic and combustion gas corrosion analysis. A main cause of fire-growth and generating toxic gas when it burns, should be dealt with great care in life safety design. Similar patterned fire incidents such as, Inchon Live-Hof Pub Restaurant as, Sea-land Children Resort have proven that serious loss of lives were caused by hazardous gas generated fire resistance cable materials. In this paper, Referenced documents were ASTM E662 standard test method for specific Ds genalated by solid materials. The furnace control system shall maintain the required irradiance level under steady-state condition with the chamber door closed of 2.5$\pm40.04〔w/$\textrm{cm}^2$〕for 20 min. According to the results of the smoke density analysis of NFR-8 and FR-PVC the highest decomposition flaming smoke density range of NFR-8 and FR-PVC were 25.2 to 37.5 and 51.1 respectively. Nonflaming smoke density range of NFR-8 and FR-PVC were 100.4 to 112.2 and 126.5 to 398.8. Also, the fire gases was occurred carbon monoxide and decomposition than in polyolefin due to incomplete combustion of PVC which has high content of carbon in chemical compound.

A Study on the Soil Respiration in Cutting and Uncutting Areas of Larix leptolepis Plantation (잎갈나무조림지의 벌목지와 비벌목지의 토양호흡에 관한 연구)

  • Lee, Kyu-Jin;Mun, Hyeong-Tae
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1353-1357
    • /
    • 2010
  • Quantification of the ecosystem respiration is essential in understanding the carbon cycling of natural and disturbed landscapes. Soil respiration and some environmental factors which affect soil respiration were investigated in a Larix leptolepis plantation inKongju, Korea. Soil respiration was measured at midday of the $15^{th}$ and $30^{th}$ day of every month from May to December in a non-cutting area (Control) and a cutting area (Treatment) with IRGA Soil Respiration Analyzer. Throughout the study period, average soil temperature and water content were $23.3{\pm}0.5^{\circ}C$ and $27.76{\pm}7.12%$ for control, and $25.9{\pm}3.1^{\circ}C$ and $24.55{\pm}5.12%$ for treatment, respectively. There was a positive correlation ($R^2$=0.8905) between soil respiration and soil temperature in the study area. However, there was no significant correlation between soil respiration and soil moisture ($R^2$=0.4437). The seasonal soil respiration increased in the summer and decreased in the winter. In August, maximum soil respirations in the control and treatment areas were $0.82{\pm}0.13$ and $1.32{\pm}0.10$ $gCO_2{\cdot}^{-2}{\cdot}r^{-1}$, respectively. Total amounts of $CO_2$ evolution in the control and treatment areas from May to December in 2008 were 2,419.2 and 3,610.8 $CO_2g{\cdot}m^{-2}$, respectively. The amount of soil respiration in the treatment area was 49.3% greater than in the control. Increased soil respiration in the treatment area may be due to increased soil temperature, which drives increased microbial decomposition. According to our present investigation, forest cutting will increase the atmospheric $CO_2$ by increasing soil respiration.

Designed of rPP/d2w®/ZnO Nanocomposite Flexible Film for Food Packaging and Characterization on Mechanical and Antimicrobial Properties (산화분해촉매를 함유한 rPP/ZnO 나노컴포지트 유연식품포장필름 제조 및 물성 특성 연구)

  • Lee, Jin-kyoung;Gil, Bo-min;Lee, Dong-jin;Lee, Ik-mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • In this study, pro-oxidant($d2w^{(R)}$) and rPP/ZnO nanocomposite flexible films for food packaging were prepared, and their mechanical and antimicrobial properties were investigated. As a result, the carbonyl index and hydroxyl index increased with exposured time to heat and UV rays. Surface analysis showed that the addition of zinc oxide improved the dispersibility and compatibility of the polymer, so that the surface of the composite film was smooth and the zinc oxide particles were smaller than the compared film. And it kept the physical properties by heat and UV ray blocking effect, and it worked to reduce decomposition. In the antimicrobial activity test, the microbial reduction rate was 3 logs or more at the use concentration of zinc oxide. The tensile strength was increased and the elongation was decreased. Oxidative degradability of multi-layered film in UV exposured for 72 hours, the molecular weight of the film decreased by 75.6%, 1,294 g/mol Mn and 5,920 g/mol Mw. In the safety analysis of food packaging materials, we obtained that are in standard of polypropylene, a food contact material of domestic law.

Development of Analysis Model for Down Scaled Two Phase Catalytic Reactor (초소형 촉매 이상 분해 반응기 해석 모델 개발)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.24-30
    • /
    • 2004
  • Analysis model for the two-phase catalytic reactor is presented. With the progress in development of micro thermofluidic devices, needs fur understanding of the phenomena in two phase reaction in cm scale has been arisen. To investigate thermal and reactive performance of down scaled two phase reactor simple analysis model that is a kind of lumped flow model is proposed. Analysis model presented is based on the experiment on mm scale model reactor. Target experiment is catalytic decomposition of 70wt% hydrogen peroxide with existence of perovskite L $a_{0.8}$S $r_{0.2}$Co $O_3$ catalyst. It is composed of balance equations of mass and energy. Each phase is considered to be a species fur the simplicity. Axial diffusion and transversal distribution of properties are neglected. Two phase catalytic reaction is modeled as successive gasification of liquid lump around catalyst and reaction in gas phase. Heat transfer is modeled by model function ofNu number. Modeled Nu is expressed as Nu=N $u_{0}$ (1+ $a_1$( $a_2$ $T^{-}$ $a_3$)exp( $a_4$ $T^{-1}$)exp( $a_{5}$ z). Transfer coefficients are determined by the comparison of experimental results. With the model, heat transfer characteristics are investigated. Also by the mass transfer coefficient, characteristics in mass transfer is investigated. With the result basic understanding on design and analysis of mm scale two-phase reactive device is obtained. Also it can be further applied to micro scale reactive device fabricated by micromachining.ing..

Composting Characteristics of Food Waste - Poultry Manure Mixture Inoculated with Effective Microorganisms (유용미생물처리 음식물쓰레기와 계분 혼합물 퇴비화 특성)

  • Hong, Ji-Hyung;Park, Keum-Joo
    • Journal of Animal Environmental Science
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2009
  • This study investigated the evaluation of maturity, stability, nutrient and heavy metal from rotating drum composter of food waste amended with poultry manure composting inoculated with effective microorganisms(EM). Composting were performed for the first, drying reactor($15m^3$) 3 hours and the second, composting reactor($30m^3$) 24 hours, and parameters monitored this period included moisture content, NaCl, pH, electrical conductivity(EC), C/N ratio, organic matter(OM), nutrient content and heavy metal. Changes in compost temperature during composting were maintained constantly in the range of $60{\sim}80^{\circ}C$ using firewood boiler(450 MJ/h). We examined physicochemical parameters and heavy metals in order to assess their effectiveness as stability and maturity, nutrient and harmful indicators such as seed germination rate<60%, potassium 1>%, dm and NaCl>1%, dm at the end of the final compost. The finished compost obtained after decomposition phase at the end of the 2nd composter could not be utilized for land improvement or reclamation.

  • PDF

A grid-line suppression technique based on the nonsubsampled contourlet transform in digital radiography

  • Namwoo Kim;Taeyoung Um;Hyun Tae Leem;Bon Tack Koo;Kyuseok Kim;Kyu Bom Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.655-668
    • /
    • 2023
  • In radiography, an antiscatter grid is a well-known device for eliminating unexpected x-ray scatter. We investigate a new stationary grid artifact suppression method based on a nonsubsampled contourlet transform (NSCT) incorporated with Gaussian band-pass filtering. The proposed method has an advantage that extracts the Moiré components while minimizing the loss of image information and apply the prior information of Moiré component positions in multi-decomposition sub-band images. We implemented the proposed algorithm and performed a simulation and an experiment to demonstrate its viability. We did this experiment using an x-ray tube (M-113T, Varian, focal spot size: 0.1 mm), a flat-panel detector (ROSE-M Sensor, Aspenstate, pixel dimension: 3032 × 3800 pixels, pixel size: 0.076 mm), and carbon graphite-interspaced grids (JPI Healthcare, 18 cm × 24 cm, line density: 103 LP/inch and 150 LP/inch, ratio: 5:1, focal distance: 65 cm). Our results indicate that the proposed method successfully suppressed grid artifacts by reducing them without either reducing the spatial resolution or causing negative side effects. Consequently, we anticipate that the proposed method can improve image acquisition in a stationary grid x-ray system as well as in extended x-ray imaging.