DOI QR코드

DOI QR Code

A grid-line suppression technique based on the nonsubsampled contourlet transform in digital radiography

  • Namwoo Kim (Department of Integrative Medicine, Major in Digital Healthcare, Yonsei University College of Medicine) ;
  • Taeyoung Um (Department of Integrative Medicine, Major in Digital Healthcare, Yonsei University College of Medicine) ;
  • Hyun Tae Leem (R&D Center, Osteosys Co., Ltd) ;
  • Bon Tack Koo (Department of Integrative Medicine, Major in Digital Healthcare, Yonsei University College of Medicine) ;
  • Kyuseok Kim (Department of Integrative Medicine, Major in Digital Healthcare, Yonsei University College of Medicine) ;
  • Kyu Bom Kim (Department of Integrative Medicine, Major in Digital Healthcare, Yonsei University College of Medicine)
  • Received : 2022.05.17
  • Accepted : 2022.10.17
  • Published : 2023.02.25

Abstract

In radiography, an antiscatter grid is a well-known device for eliminating unexpected x-ray scatter. We investigate a new stationary grid artifact suppression method based on a nonsubsampled contourlet transform (NSCT) incorporated with Gaussian band-pass filtering. The proposed method has an advantage that extracts the Moiré components while minimizing the loss of image information and apply the prior information of Moiré component positions in multi-decomposition sub-band images. We implemented the proposed algorithm and performed a simulation and an experiment to demonstrate its viability. We did this experiment using an x-ray tube (M-113T, Varian, focal spot size: 0.1 mm), a flat-panel detector (ROSE-M Sensor, Aspenstate, pixel dimension: 3032 × 3800 pixels, pixel size: 0.076 mm), and carbon graphite-interspaced grids (JPI Healthcare, 18 cm × 24 cm, line density: 103 LP/inch and 150 LP/inch, ratio: 5:1, focal distance: 65 cm). Our results indicate that the proposed method successfully suppressed grid artifacts by reducing them without either reducing the spatial resolution or causing negative side effects. Consequently, we anticipate that the proposed method can improve image acquisition in a stationary grid x-ray system as well as in extended x-ray imaging.

Keywords

Acknowledgement

This research was supported by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: 202011B26).

References

  1. H. Chan, K. Doi, Investigation of the performance of antiscatter grids: Monte Carlo simulation studies, Phys. Med. Biol. 27 (6) (1982) 785-803. https://doi.org/10.1088/0031-9155/27/6/002
  2. C. Lin, W. Lee, S. Chen, C. Tsai, J. Lee, C. Chang, Y. Ching, A study of grid artifacts formation and elimination in computed radiographic images, J. Digit. Imag. 19 (4) (2006) 351-361. https://doi.org/10.1007/s10278-006-0630-8
  3. D. Kim, S. Lee, Grid artifact reduction in radiography with arctan(1/2)-degree rotated grid, in: Proceedings of the IEEE International Conference on Image Processing, 2010, https://doi.org/10.1109/ICIP.2010.5653163. Hong Kong, China.
  4. J. Wang, H. Huang, Film digitization aliasing artifacts caused by grid line patterns, IEEE Trans. Med. Imag. 13 (2) (1994) 375-385. https://doi.org/10.1109/42.293930
  5. D. Gauntt, G. Barnes, Grid line artifact formation: a comprehensive theory, Med. Phys. 33 (6) (2006) 1668-1677. https://doi.org/10.1118/1.2164069
  6. D. Bednarek, S. Rudin, R. Wong, Artifacts produced by moving grids, Radiol. 147 (1) (1983) 255-258. https://doi.org/10.1148/radiology.147.1.6828740
  7. L. Barski, X. Wang, Characterization, detection, and suppression of stationary grids in digital projection radiography imagery, in: Proc. SPIE 3658, Medical Imaging 1999, Image Display, San Diego, CA, USA, 1999, https://doi.org/10.1117/12.349462.
  8. I. Belykh and C. Cornelius, Method for antiscatter stationary grid artifacts detection and attenuation in digital radiographic images, US Patent No. US 7050618B2 (23 May 2006).
  9. R. Sasada, M. Yamada, S. Hara, H. Takeo, K. Shimura, Stationary grid pattern removal using 2-dimensional technique for moire-free radiographic image display, in: Proc. SPIE 5029, Medical Imaging 2003: Visualization, Image-Guided Procedures, and Display, 2003, https://doi.org/10.1117/12.479595. San Diego, CA, USA.
  10. D. Gauntt, G. Barnes, A novel technique to suppress grid line artifacts, Med. Phys. 33 (6) (2006) 1654-1667. https://doi.org/10.1118/1.2184444
  11. J. Yoon, Y. Park, C. Park, D. Kim, J. Lee, N. Chung, B. Choe, T. Suh, H. Lee, Reduction of a grid moire pattern by integrating a carbon-interspaced high precision x-ray grid with a digital radiographic detector, Med. Phys. 34 (11) (2007) 4092-4097. https://doi.org/10.1118/1.2775743
  12. D. Kim, S. Lee, Grid artifact reduction for direct digital radiography detectors based on rotated stationary grids with homomorphic filtering, Med. Phys. 40 (6) (2013), 061905.
  13. R. Wilks, Principles of Radiological Physics, Churchill Livingston, New York, Edinburgh, 1981.
  14. T. Maruyama, H. Yamamoto, Elimination of Gridlines by Using Non-linear Filter in Mammographic Image, IST 2009 International Workshop on Imaging Systems and Techniques, 2009, https://doi.org/10.1049/iet-ipr.2009.0240. Shenzhen, China.
  15. I. Belykh, C. Cornelius, Antiscatter stationary grid artifacts automated detection and removal in projection radiography images, in: Proc. SPIE 4322, Medical Imaging 2001, Image Processing, San Diego, CA, USA, 2001, https://doi.org/10.1117/12.430992.
  16. G. Hudhud, M. Turner, Digital removal of power frequency artifacts using a fourier space median filter, IEEE Signal Process. Lett. 12 (8) (2005) 573-576. https://doi.org/10.1109/LSP.2005.851257
  17. A. Konstantinidis, A. Olivo, P. Munro, S. Bohndiek, R. Speller, Optical characterization of a CMOS active pixel sensor using periodic noise reduction techniques, Nucl. Instrum. Methods Phys. Res., Sect. A 620 (2) (2010) 549-556. https://doi.org/10.1016/j.nima.2010.03.138
  18. I. Aizenberg, C. Butakoff, A windowed Gaussian notch filter for quasi-periodic noise removal, Image Vis Comput. 26 (10) (2008) 1347-1353. https://doi.org/10.1016/j.imavis.2007.08.011
  19. D. Kim, S. Lee, Slope detector for determination of the ringing artifact in filtering x-ray images, in: Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, 2012, https://doi.org/10.1109/ICASSP.2012.6287983. Kyoto, Japan.
  20. J. Varghese, S. Subash, N. Tairan, Fourier transform-based windowed adaptive switching minimum filter for reducing periodic noise from digital images, IET Image Process. 10 (9) (2016) 646-656. https://doi.org/10.1049/iet-ipr.2015.0750
  21. P. Moallem, M. Masoumzadeh, M. Habibi, A novel adaptive Gaussian restoration filter for reducing periodic noises in digital image, Signal Image Video Process 9 (5) (2013) 1179-1191. https://doi.org/10.1007/s11760-013-0560-0
  22. J. Varghese, S. Subhash, K. Subramaniam, K. Sridhar, Adaptive Gaussian notch filter for removing periodic noise from digital images, IET Image Process. 14 (8) (2020) 1529-1538. https://doi.org/10.1049/iet-ipr.2018.5707
  23. H. Tang, D. Tong, X. Bao, J. Dillenseger, A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform, Med. Phys. 42 (4) (2015) 1721-1729. https://doi.org/10.1118/1.4914861
  24. K. Shirai, S. Ono, M. Okuda, Frequency Spectrum Regularization for Pattern Noise Removal Based on Image Decomposition, 2017 25th European Signal Processing Conference (EUSIPCO), 2017, https://doi.org/10.23919/EUSIPCO.2017.8081465. Kos, Greece.
  25. F. Fang, T. Wang, S. Wu, G. Zhang, Removing moire patterns from single images, Inf. Sci. 14 (8) (2020) 1529-1538.
  26. K. Kim, H. Kim, H. Lee, J. Jung, J. Nam, J. Park, D. Kim, H. Kim, H. Kim, A grid-line suppression technique based on deep convolutional neural networks, in: Proc. SPIE 11313, Medical Imaging 2020: Image Processing, 2020, 1131327, https://doi.org/10.1117/12.2549281. Houston, Texas, USA.
  27. A. Cunha, J. Zhou, M. Do, The nonsubsampled contourlet transform: theory, design, and applications, IEEE Trans. Image Process. 15 (10) (2006) 3089-3101. https://doi.org/10.1109/TIP.2006.877507
  28. S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell. 11 (7) (1989) 674-693. https://doi.org/10.1109/34.192463
  29. S. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Trans. Am. Math. Soc. 315 (1) (1989) 69-87. https://doi.org/10.1090/S0002-9947-1989-1008470-5
  30. F. Meskine, M. Mezouar, N. Taleb, A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms, Sensors-Basel 10 (9) (2010) 8553-8571. https://doi.org/10.3390/s100908553
  31. M. Do, M. Vetterli, The contourlet transform: an efficient directional multiresolution image representation, IEEE Trans. Image Process. 14 (12) (1989) 2091-2106. https://doi.org/10.1109/TIP.2005.859376
  32. M. Shensa, The discrete wavelet transforms: wedding the a trous and mallat algorithms, IEEE Trans. Signal Process. 40 (10) (1992) 2464-2482. https://doi.org/10.1109/78.157290
  33. R. Bamberger, M. Smith, A filter bank for the directional decomposition of images: theory and design, IEEE Trans. Signal Process. 40 (4) (1992) 882-893. https://doi.org/10.1109/78.127960
  34. E. Kang, J. Min, J. Ye, A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction, Med. Phys. 44 (10) (2017) e360-e375. https://doi.org/10.1002/mp.12344
  35. S. Lee, M. Lee, M. Kang, Poisson-Gaussian noise analysis and estimation for low-dose x-ray images in the NSCT domain, Sensors-Basel 18 (4) (2018) 1019.
  36. A. Paeth, A fast algorithm for general raster rotation, in: Proceedings of Graphics Interface and Vision Interface vol. 86, 1986, https://doi.org/10.20380/GI1986.15. Vancouver, British Columbia, Canada.
  37. L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D 60 (1-4) (1992) 259-268. https://doi.org/10.1016/0167-2789(92)90242-F
  38. N. Parikh, S. Boyd, Proximal algorithms, Found. Trends Optim. 1 (3) (2014) 127-239. https://doi.org/10.1561/2400000003
  39. F. Ulaby, F. Kouyate, B. Brisco, T. Williams, Textural information in SAR images, IEEE Geosci. Remote Sens. (1986) 235-245. GE-24.