• Title/Summary/Keyword: $x^2$ Distribution

Search Result 1,640, Processing Time 0.035 seconds

CHARACTERIZATIONS BASED ON THE INDEPENDENCE OF THE EXPONENTIAL AND PARETO DISTRIBUTIONS BY RECORD VALUES

  • LEE MIN-YOUNG;CHANG SE-KYUNG
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.497-503
    • /
    • 2005
  • This paper presents characterizations on the independence of the exponential and Pareto distributions by record values. Let ${X_{n},\;n {\ge1}$ be a sequence of independent and identically distributed(i.i.d) random variables with a continuous cumulative distribution function(cdf) F(x) and probability density function(pdf) f(x). $Let{\;}Y_{n} = max{X_1, X_2, \ldots, X_n}$ for n \ge 1. We say $X_{j}$ is an upper record value of ${X_{n},{\;}n\ge 1}, if Y_{j} > Y_{j-1}, j > 1$. The indices at which the upper record values occur are given by the record times {u(n)}, n \ge 1, where u(n) = $min{j|j > u(n-1), X_{j} > X_{u(n-1)}, n \ge 2}$ and u(l) = 1. Then F(x) = $1 - e^{-\frac{x}{a}}$, x > 0, ${\sigma} > 0$ if and only if $\frac {X_u(_n)}{X_u(_{n+1})} and X_u(_{n+1}), n \ge 1$, are independent. Also F(x) = $1 - x^{-\theta}, x > 1, {\theta} > 0$ if and only if $\frac {X_u(_{n+1})}{X_u(_n)}{\;}and{\;} X_{u(n)},{\;} n {\ge} 1$, are independent.

N(2D) Product Velocity Mapped Imaging in the VUV Photolysis of Nitrous Oxide at 118.2 nm

  • Cosofret, Bogdan R.;Lambert, H. Mark;Houston, Paul L.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.179-183
    • /
    • 2002
  • Resonance-enhanced multiphoton ionization with time-of-flight product imaging of the $N(^2D)$ atoms has been used to study the $N_2O$ photodissociation at 118.2 nm and the two-photon dissociation at 268.9 nm. These imaging experiments allowed the determination of the total kinetic energy distribution of the $NO(X^2{\prod})$ and $N(^2D_{5/2})$ products. The $NO(X^2{\prod})$ fragments resulting from the photodissociation processes are produced in highly vibrationally excited states. The two-photon photodissociation process yields a broad $NO(X^2{\prod})$ vibrational energy distribution, while the 118.2 nm dissociation appears to produce a vibrational distribution sharply peaked at $NO(X^2{\prod},\;{\nu}=14)$.

Improving Percentile Points of $x^2$ Distribution ($x^2$분포의 백분위수의 개선에 관한 연구)

  • 이희춘
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.16 no.28
    • /
    • pp.137-143
    • /
    • 1993
  • Generally there are three methods to derive an approximation formula: 1) approching standard normal distribution by appropriate changing variable 2) using standardization variable for expansion 3) deriving approximation formula by direct method. This paper present correction terms having the form of $C_{1/v^{n/2}}/{\;}+{\;}C_2{\;}(n=1,2)$ with respect to $x^2_{\alpha}(v)$ distribution (${\nu}{\;}{\leq}{\;}30$), which minimize the error by EDA method and least square method.

  • PDF

On the Estimation of the Empirical Distribution Function for Negatively Associated Processes

  • Kim, Tae-Sung;Lee, Seung-Woo;Ko, Mi-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.229-235
    • /
    • 2001
  • Let {X$\_$n/, n$\geq$1] be a stationary sequence of negatively associated random variables with distribution function F(x)=P(X$_1$$\leq$x). The empirical distribution function F$\_$n/(x) based on X$_1$, X$_2$,....., X$\_$n/ is proposed as an estimator for F$\_$n/(x). Strong consistency and asymptotic normality of F$\_$n/(x) are studied. We also apply these ideas to estimation of the survival function.

  • PDF

Asymptotic Distribution of Sample Autocorrelation Function for the First-order Bilinear Time Series Model

  • Kim, Won-Kyung
    • Journal of the Korean Statistical Society
    • /
    • v.19 no.2
    • /
    • pp.139-144
    • /
    • 1990
  • For the first-order bilinear time series model $X_t = aX_{t-1} + e_i + be_{t-1}X_{t-1}$ where ${e_i}$ is a sequence of independent normal random variables with mean 0 and variance $\sigma^2$, the asymptotic distribution of sample autocarrelation function is obtained and shown to follow a normal distribution. The variance of the asymptotic distribution is of a complicated form and hence a bootstrap estimate of the variance is proposed for large sample inference. This result can be used to distinguish between different bilinear models.

  • PDF

A Study on Estimators of Parameters and Pr[X < Y] in Marshall and Olkin's Bivariate Exponential Model

  • Kim, Jae Joo;Park, Eun Sik
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.101-116
    • /
    • 1990
  • The objectives of this thesis are : first, to estimate the parameters and Pr[X < Y] in the Marshall and Olkin's Bivariate Exponential Distribution ; and secondly, to compare the Bayes estimators of Pr[X < Y] with maximum likelihood estimator of Pr[X < Y] in the Marshall and Olkin's Bivariate Exponential Distribution. Through the Monte Carlo Simulation, we observed that the Bayes estimators of Pr[X < Y] perform better than the maximum likelihood estimator of Pr[X < Y] and the Bayes estimator of Pr[X < Y] with gamma prior distribution performs better than with vague prior distribution with respect to bias and mean squared error in the Marshall and Olkin's Bivariate Exponential Distribution.

  • PDF

THE BIVARIATE GAMMA EXPONENTIAL DISTRIBUTION WITH APPLICATION TO DROUGHT DATA

  • Nadarajah, Saralees
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.221-230
    • /
    • 2007
  • The exponential and the gamma distributions have been the traditional models for drought duration and drought intensity data, respectively. However, it is often assumed that the drought duration and drought intensity are independent, which is not true in practice. In this paper, an application of the bivariate gamma exponential distribution is provided to drought data from Nebraska. The exact distributions of R=X+Y, P=XY and W=X/(X+Y) and the corresponding moment properties are derived when X and Y follow this bivariate distribution.

CHARACTERIZATIONS OF THE POWER FUNCTION DISTRIBUTION BY THE INDEPENDENCE OF RECORD VALUES

  • Chang, Se-Kyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.139-146
    • /
    • 2007
  • In this paper, we present characterizations of the power function distribution by the independence of record values. We establish that $X{\in}$ POW(1, ${\nu}$) for ${\nu}$ > 0, if and only if $\frac{X_{L(n)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n{\geq}1$. And we prove that $X{\in}$ POW(1, ${\nu}$) for ${\nu}$ > 0; if and only if $\frac{X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n{\geq}1$. Also we characterize that $X{\in}$ POW(1, ${\nu}$) for ${\nu}$ > 0, if and only if $\frac{X_{L(n)}+X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n{\geq}1$.

  • PDF

CHARACTERIZATIONS OF THE WEIBULL DISTRIBUTION BY THE INDEPENDENCE OF RECORD VALUES

  • Chang, Se-Kyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.279-285
    • /
    • 2008
  • This paper presents some characterizations of the Weibull distribution by the independence of record values. We prove that $X{\sim}Weibull(1,{\alpha})$, ${\alpha}>0$ if and only if $\frac{X_{U(n+1)}}{X_{U(n+1)}-X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent. We show that $X{\sim}Weibull(1,{\alpha})$, ${\alpha}>0$ if and only if $\frac{X_{U(n+1)}}{X_{U(n+1)}-X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent. And we establish that $X{\sim}Weibull(1,{\alpha})$, ${\alpha}>0$ if and only if $\frac{X_{U(n+1)}+X_{U(n)}}{X_{U(n+1)}-X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent.

  • PDF

CHARACTERIZATIONS OF THE WEIBULL DISTRIBUTION BY THE INDEPENDENCE OF THE UPPER RECORD VALUES

  • Chang, Se-Kyung;Lee, Min-Young
    • The Pure and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.163-167
    • /
    • 2008
  • This paper presents characterizations of the Weibull distribution by the independence of record values. We prove that $X\;{\in}\;W\;EI ({\alpha})$, if and only if $\frac {X_{U(n+l)}} {X_{U(n+1)}\;+\;X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent or $\frac {X_{U(n)}} {X_{U(n+1)}\;+\;X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent. And also we establish that $X\;{\in}\;W\;EI({\alpha})$, if and only if $\frac {X_{U(n+1)}\;-\;X_{U(n)}} {X_{U(n+1)}\;+\;X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent.

  • PDF