• Title/Summary/Keyword: $tRNA^{val}$

Search Result 11, Processing Time 0.025 seconds

In vitro Selection of RNA Aptamers which Bind to Escherichia coli tRNAVal (대장균 tRNAVal에 결합하는 RNA Aptamer들의 시험관내 선별)

  • Jo, Bong Rae
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.2
    • /
    • pp.157-163
    • /
    • 2002
  • To identify RNA motifs interacting with $tRNA^{Val}$, a SELEX(Systematic Evolution of Ligands by Exponential Enrichment) was applied. Random DNA library which contains a region of ran-domized 48-mer oligonucleotide flanked by conserved sequ ence primers was transcribed into RNA pool using T7 RNA polymerase and RNA aptamers were selected with $tRNA^{Val}$ -immobilized affinity column through 14 rounds of SELEX. Some of the resulting aptamers contained a consensus sequence similar to the sequence in the loop regions of three rRNAs; C43GAAC47 sequence of 5S rRNA, G1491AAGU1495, G1379UUCC1383 sequence of 16S rRNA and C1064UUAG1068, G2110UGUA2114, C2480GACGG2485, A2600CAGU2604 sequence of 23S rRNA. These results suggest that $tRNA^{Val}$ can interact with 5S rRNA, 16S rRNA and 23S rRNA with variety in ribosome.

Isolation and Characterization of Pre-$tRNA^{Val}$ Splicing Mutants of Schizosaccharomyces pombe

  • Hwang, Ku-Chan;Kim, Dae-Myung
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.334-340
    • /
    • 1997
  • A collection of 132 temperature sensitive (ts) mutants was generated by the chemical mutagenesis of Schizosaccharomyces pombe wild type strain and screened for tRNA splicing defects on Northern blots by hybridization with an oligonucleotide that recognizes the exon of the S. pombe tRNA^Val as a probe. We identidied 6 mutants which accumulate precursor $tRNA^{Val}$. Among them, 2 mutants exhibited remarkable morphological differences compared to wild type cells. One tRNA splicing mutant showed elongated cell shape in permissive as well as non-permissive cultures. The other mutant exhibited shortened cell morphology only in nonpermissive culture. The total RNA pattern in the splicing mutants appeared to be normal. Genetic analysis of four $tRNA^{Val}$ splicing mutants demonstrated that the mutation reside in different genes.

  • PDF

Analysis of 16S-23S rRNA Intergenic Spacer Region of Vibrio vulnificus (Vibrio vulnificus의 16S-23S rRNA Intergenic Spacer Region 분석)

  • PARK Young Mi;LEE Jehee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.239-246
    • /
    • 2003
  • We have examined the 16S-23S rRNA intergenic spacer region (ISR) of Vibrio vulnificus KCTC 2959. ISRs were amplified by primers complementary to conserved regions of 16S and 23S rRNA genes. ISR amplicons were cloned and sequenced. Analysis of the ISR sequences showed that V. vulnificus KCTC 2959 contains five types of polymorphic ISRs. Size of ISRs ranged from 424 to 741 bp in length and the number of tRNA genes ranged from one to four. The ISRs were designated as ISR-E $(tRNA^{Glu}),\;ISR-IA\;(tRNA^{Ile}-tRNA^{Ala})$, ISR-EKV $(tRNA^{Glu}-tRNA^{Lys}-tRNA^{Val})$, ISR-IAV $(tRNA^{Ile}-tRNA^{Ala}-tRNA^{val})$ and ISR-EKAV $(tRNA^{Glu}-tRNA^{Lys}-tRNA^{Ala}-tRNA^{Val})$ based on their tRNA genes. Multiple alignment of representative sequences from different Vibrio species revealed several domains of high sequence variability. We used the sequences of variable domains to design species-specific primer for detection PCR. Specificity of the primers was examined using genomic DNA prepared from 18 different Vibrio species. The results showed that the PCR using primers designed in this study can be used to detect V. vulnificus from other Vibrio species.

Use of 16S-23S rRNA Intergenic Spacer Region for Rapid Detection of Vibrio fluvialis (16S-23S rRNA Intergenic Spacer Region을 이용한 Vibrio fluvialis의 검출)

  • 강현실;허문수;이제희
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.1
    • /
    • pp.77-85
    • /
    • 2003
  • We have examined the 16S-23S rRNA intergenic spacer regions (ISR) of Vibrio fluvialis. ISRs were PCR amplified, cloned into a plasmid vector and then sequenced. As results of ISR nucleotide sequence analysis, total of 6 clones were isolated depending on the size. The clones were different in both the number and the composition of the tRNA genes, and were designated ISR-A, ISR-E, ISR-El, ISR-lA, ISR-EKV, ISR-EKAV. ISR-A contains $tRNA^{Ala}$; ISR-lA, $tRNA^{Ile}$-$tRNA^{Ala}$; ISR-EKV, $tRNA^{GIu}$-$tRNA^{Lys}$-$tRNA^{Val}$;ISE-EKAV, $tRNA^{GIu}$-$tRNA^{Lys}$-$tRNA^{Ala}$-$tRNA^{Val}$; ISR -E and E1, $tRNA^{GIu}$ clusters. ISR-EKV was shown to be a minor type out of the six ISR types and showed a very limited homology between ISR-EKV from V, fluvialis and ISRa from other Vibrio species. Therefore ISR-EKV sequence was used to design species-specific primers to detect V, fiuvialis from other Vibrio species by PCR reaction. The specificity of the primers was examined using genomic DNA of other Vibrios as templates for PCR reaction. The result showed that PCR can be a useful method to detect V. fluvialis among Vibrio species in a single PCR reaction.

Comparative Dynamics of $tRNA^{val}$ and pBluescript II SK(+) Phagemid Studied with Ethidium Bromide and a Long-lifetime Metal-ligand Complex

  • Kang, Jung-Sook;Yoon, Ji-Hye
    • Journal of Photoscience
    • /
    • v.11 no.3
    • /
    • pp.133-139
    • /
    • 2004
  • The metal-ligand complex, $[Ru(phen)_2(dppz)]^{2+}$ (phen=1,10-phenanthroline, dppz=dipyrido[3,2-a:2',3'-c]phenazine) (RuPD), was used as a spectroscopic probe for studying nucleic acid dynamics. The RuPD complex displays a long lifetime and a molecular light switch property upon DNA binding due to shielding of its dppz ligand from water. To show the usefulness of this luminophore (RuPD) for probing nucleic acid dynamics, we compared its intensity and anisotropy decays when intercalated into the $tRNA^{val}$ and pBluescript (pBS) II SK(+) phagemid through a comparison with ethidium bromide (EB), a conventional nucleic acid probe. We used frequency-domain fluorometry with a blue light-emitting diode (LED) as the modulated light source. The mean lifetime for the $tRNA^{val}$ (<${\tau}$> = 166.5 ns) was much shorter than that for the pBS II SK(+) phagemid (<${\tau}$> = 481.3 ns), suggesting a much more efficient shielding from water by the phagemid. Because of their size difference, the anisotropy decay data showed a much shorter rotational correlation times for the $tRNA^{val}$ (99.9 and 23.6 ns) than for the pBS II SK(+) phagemid (968.7 and 39.5 ns). These results indicate that RuPD can be useful for studying nucleic acid dynamics.

  • PDF

DYNAMICS OF $tRNA*{val}$ MEASURED WITH A LONG-LIFETIME METAL-LIGAND COMPLEX

  • Kang, Jung-Sook
    • Journal of Photoscience
    • /
    • v.7 no.4
    • /
    • pp.155-159
    • /
    • 2000
  • [Ru(bpy)$_2$(dppz)]$^2$$^{+}$ (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine)(RuBD), a long-lifetime metal-ligand complex displays photophysical properties including long lifetime, polarized emission, and very little background fluorescence. To further show the usefulness of this luminophore(RuBD) for probing nucleic acid dynamics, its intensity and anisotropy decays when bound to tRN $A^{val}$ were examined using frequency-domain fluorometry with a blue light-emitting diode(LED)as the modulated light source. Unexpectedly much longer mean lifetime was obtained at 4$^{\circ}C$(<$\tau$>=178.3 ns) as compared to at $25^{\circ}C$(<$\tau$>=117.0 ns), suggesting more favorable conformation of tRN $A^{val}$ for RuBD when intercalated at 4$^{\circ}C$. The anisotropy decay data showed longer rotational correlation times at 4$^{\circ}C$(52.7 and 13.0 ns) than at $25^{\circ}C$ (32.9 and 10.3 ns). The presence of two rotational correlation times suggests that RuBD reveals both local and overall rotational motion of tRN $A^{val}$. Due to long lifetime of RuBD and small size of tRN $A^{val}$, very low steady-state anisotropy values were observed, 0.048 and 0.036 at 4 and $25^{\circ}C$, respectively. However, a clear difference in the modulated anisotropy values was seen between 4 and $25^{\circ}C$. These results indicate that RuBD can be useful for studying hydrodynamics of small nucleic acids such as tRN $A^{val}$.^{val}$.>.$.>.

  • PDF

Examining the Gm18 and $m^1G$ Modification Positions in tRNA Sequences

  • Subramanian, Mayavan;Srinivasan, Thangavelu;Sudarsanam, Dorairaj
    • Genomics & Informatics
    • /
    • v.12 no.2
    • /
    • pp.71-75
    • /
    • 2014
  • The tRNA structure contains conserved modifications that are responsible for its stability and are involved in the initiation and accuracy of the translation process. tRNA modification enzymes are prevalent in bacteria, archaea, and eukaryotes. tRNA Gm18 methyltransferase (TrmH) and tRNA $m^1G37$ methyltransferase (TrmD) are prevalent and essential enzymes in bacterial populations. TrmH involves itself in methylation process at the 2'-OH group of ribose at the 18th position of guanosine (G) in tRNAs. TrmD methylates the G residue next to the anticodon in selected tRNA subsets. Initially, $m^1G37$ modification was reported to take place on three conserved tRNA subsets ($tRNA^{Arg}$, $tRNA^{Leu}$, $tRNA^{Pro}$); later on, few archaea and eukaryotes organisms revealed that other tRNAs also have the $m^1G37$ modification. The present study reveals Gm18, $m^1G37$ modification, and positions of $m^1G$ that take place next to the anticodon in tRNA sequences. We selected extremophile organisms and attempted to retrieve the $m^1G$ and Gm18 modification bases in tRNA sequences. Results showed that the Gm18 modification G residue occurs in all tRNA subsets except three tRNAs ($tRNA^{Met}$, $tRNA^{Pro}$, $tRNA^{Val}$). Whereas the $m^1G37$ modification base G is formed only on $tRNA^{Arg}$, $tRNA^{Leu}$, $tRNA^{Pro}$, and $tRNA^{His}$, the rest of the tRNAs contain adenine (A) next to the anticodon. Thus, we hypothesize that Gm18 modification and $m^1G$ modification occur irrespective of a G residue in tRNAs.

First Record of Orobdella tsushimensis (Hirudinida: Arhynchobdellida: Gastrostomobdellidae) from the Korean Peninsula and Molecular Phylogenetic Relationships of the Specimens

  • Nakano, Takafumi;Seo, Hong-Yul
    • Animal Systematics, Evolution and Diversity
    • /
    • v.30 no.2
    • /
    • pp.87-94
    • /
    • 2014
  • Specimens of the genus Orobdella Oka, 1895 from Korea, including various locations in the Korean Peninsula, were identified as Orobdella tsushimensis Nakano, 2011. Phylogenetic analyses using mitochondrial cytochrome oxidase subunit 1 (COI), ND1, $tRNA^{Cys}$, $tRNA^{Met}$, 12S rRNA, $tRNA^{val}$, and 16S rRNA markers show that the newly collected specimens form a monophyletic group with the known O. tsushimensis specimens. The genetic distance of COI of these specimens was in the range 0.4-6.6%. These results confirm that the newly collected specimens belong to O. tsushimensis. This is the first record of the genus Orobdella from the Korean Peninsula.

Phenylalanine and valine differentially stimulate milk protein synthetic and energy-mediated pathway in immortalized bovine mammary epithelial cells

  • Kim, Jungeun;Lee, Jeong-Eun;Lee, Jae-Sung;Park, Jin-Seung;Moon, Jun-Ok;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.62 no.2
    • /
    • pp.263-275
    • /
    • 2020
  • Studies on promoting milk protein yield by supplementation of amino acids have been globally conducted. Nevertheless, there is a lack of knowledge of what pathways affected by individual amino acid in mammary epithelial cells that produce milk in practice. Phenylalanine (PHE) and valine (VAL) are essential amino acids for dairy cows, however, researches on mammary cell levels are still lacking. Thus, the aim of this study was conducted to evaluate the effects of PHE and VAL on milk protein synthesis-related and energy-mediated cellular signaling in vitro using immortalized bovine mammary epithelial (MAC-T) cells. To investigate the effects of PHE and VAL, the following concentrations were added to treatment medium: 0, 0.3, 0.6, 0.9, 1.2, and 1.5 mM. The addition of PHE or VAL did not adversely affect cell viability compared to control group. The concentrations of cultured medium reached its maximum at 0.9 mM PHE and 0.6 mM VAL (p < 0.05). Therefore, aforementioned 2 treatments were analyzed for proteomics. Glucose transporter 1 and mammalian target of rapamycin mRNA expression levels were up-regulated by PHE (166% and 138%, respectively) (p < 0.05). Meanwhile, sodium-dependent neutral amino acids transporter type 2 (ASCT2) and β-casein were up-regulated by VAL (173% in ASCT2, 238% in and 218% in β-casein) (p < 0.05). A total of 134, 142, and 133 proteins were detected in control group, PHE treated group, and VAL treated group, respectively. Among significantly fold-changed proteins, proteins involved in translation initiation or energy metabolism were detected, however, expressed differentially between PHE and VAL. Thus, pathway analysis showed different stimulatory effects on energy metabolism and transcriptional pathways. Collectively, these results showed different stimulatory effects of PHE and VAL on protein synthesis-related and energy-mediated cellular signaling in MAC-T cells.

Evaluation of the inhibition of the differentiation of pre-adipocytes into matures adipocytes

  • Morvan, Pierre Yves
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.440-447
    • /
    • 2003
  • Up until today, the key to contouring has been resumed in these two alternatives, either limiting the adipocyte storing capacity by modulating lipogenesis, or by stimulating lipolysis to eliminate adipocyte lipid content. Another interesting way could be the regulation of adipocyte differentiation. In this work, we have evaluated the effect of a brown algal extract of Sphacelaria scoparia (SSE) on the differentiation of pre-adipocytes into adipocytes. A pre-adipocyte line (3T3-L 1) was used. The differentiation was evaluated by the measure of produced lipids thanks to red oil coloration and spectrophotometry, and also by the expression of adipocyte differentiation markers: enzymes such as fatty acid synthase (FAS) and stearoyl CoA desaturase (SCD), or membrane proteins such as glucose transporters (GLUT -4) and fatty acid transporters (FAT) expressed on the surface of human adipocytes. These genes are under control of two transcription factors: CAAT-enhancer binding protein (c/EBP alpha) and sterol response element binding protein (SREBP1). All these markers were analysed at different stages of differentiation by RT -PCR. Sphacelaria extract (SSE) inhibits pre-adipocytes differentiating into adipocytes following a dose-dependant relation, using a kinetics similar to retinoic acid. It decreases the expression of mRNA specific to FAS, FAT, GLUT -4, SCD1, c/EBP alpha and SREBP1. Moreover, SSE regulated on collagen 1 and collagen 4 expression. A stimulation of collagen 1 was also measured in human skin fibroblasts. Thus, SSE performs as a genuine differentiation inhibitor and not only as a lipogenesis inhibitor, and could be used in slimming products.

  • PDF