• Title/Summary/Keyword: $spin^{\mathbb{C}}$ manifold

Search Result 3, Processing Time 0.015 seconds

THE SYMMETRY OF spin DIRAC SPECTRUMS ON RIEMANNIAN PRODUCT MANIFOLDS

  • HONG, KYUSIK;SUNG, CHANYOUNG
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1037-1049
    • /
    • 2015
  • It is well-known that the spectrum of a $spin^{\mathbb{C}}$ Dirac operator on a closed Riemannian $spin^{\mathbb{C}}$ manifold $M^{2k}$ of dimension 2k for $k{\in}{\mathbb{N}}$ is symmetric. In this article, we prove that over an odd-dimensional Riemannian product $M^{2p}_1{\times}M^{2q+1}_2$ with a product $spin^{\mathbb{C}}$ structure for $p{\geq}1$, $q{\geq}0$, the spectrum of a $spin^{\mathbb{C}}$ Dirac operator given by a product connection is symmetric if and only if either the $spin^{\mathbb{C}}$ Dirac spectrum of $M^{2q+1}_2$ is symmetric or $(e^{{\frac{1}{2}}c_1(L_1)}{\hat{A}}(M_1))[M_1]=0$, where $L_1$ is the associated line bundle for the given $spin^{\mathbb{C}}$ structure of $M_1$.

EXOTIC SMOOTH STRUCTURE ON ℂℙ2#13ℂℙ2

  • Cho, Yong-Seung;Hong, Yoon-Hi
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.691-701
    • /
    • 2006
  • In this paper, we construct a new exotic smooth 4-manifold X which is homeomorphic, but not diffeomorphic, to ${\mathbb{C}}\mathbb{P}^2{\sharp}13\overline{\mathbb{C}\mathbb{P}}^2$. Moreover the manifold X has vanishing Seiberg-Witten invariants for all $Spin^c$-structures of X and has no symplectic structure.

p-EQUIVARIANT SPINC-STRUCTURES

  • Cho, Yong-Seung;Hong, Yoon-Hi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.17-28
    • /
    • 2003
  • Let X be a closed, oriented, Riemannian 4-manifold with ${{b_2}^+}(x)\;>\;1$ and of simple type. Suppose that ${\sigma}\;:\;X\;{\rightarrow}\;X$ is an involution preserving orientation with an oriented, connected, compact 2-dimensional submanifold $\Sigma$ as a fixed point set with ${\Sigma\cdot\Sigma}\;{\geq}\;0\;and\;[\Sigma]\;{\neq}\;0\;{\in}\;H_2(X;\mathbb{Z})$. We show that if _X(\Sigma)\;+\;{\Sigma\cdots\Sigma}\;{\neq}\;0$ then the $Spin^{C}$ bundle $\={P}$ is not $\mathbb{Z}_2-equivariant$, where det $\={P}\;=\;L$ is a basic class with $c_1(L)[\Sigma]\;=\;0$.