# EXOTIC SMOOTH STRUCTURE ON $\mathbb{CP}^2\sharp 13\overline{\mathbb{CP}}^2$

## YONG SEUNG CHO AND YOON HI HONG

ABSTRACT. In this paper, we construct a new exotic smooth 4-manifold X which is homeomorphic, but not diffeomorphic, to  $\mathbb{CP}^2\sharp 13\overline{\mathbb{CP}}^2$ . Moreover the manifold X has vanishing Seiberg-Witten invariants for all Spin<sup>c</sup>-structures of X and has no symplectic structure.

#### 1. Introduction

We say that a simply connected, oriented, smooth 4-manifold X has type (1,k) for some integer  $k\geq 1$  if the self-intersection form  $q_M: H^2(X;\mathbb{Z}) \to \mathbb{Z}$  defined by  $q_M(x) = \int_M x \cup x$  is isomorphic to the form  $x_1^2 - y_1^2 - \dots - y_k^2$  on  $\mathbb{Z}^{k+1}$  with a basis  $\{x_1, y_1, \dots, y_k\}$ .

By M. Freedman's result [13], any two simply-connected, oriented 4-manifolds of type (1, k) are homeomorphic. However S. K. Donaldson showed in [11] that not all such manifolds are diffeomorphic. This provides the first example of simply-connected h-cobordant manifolds which are not diffeomorphic. In fact, he showed that there are two simply-connected algebraic surfaces of type (1,9) which are not diffeomorphic.

Many people consider the problem of classifying up to diffeomorphism the complex surfaces homeomorphic to some  $\mathbb{CP}^2 \sharp k \overline{\mathbb{CP}}^2$ , that is, the problem to find exotic smooth structures on  $\mathbb{CP}^2 \sharp k \overline{\mathbb{CP}}^2$ .

When k=0, by Yau's result, any complex surface which is homeomorphic to  $\mathbb{CP}^2$  is diffeomorphic to  $\mathbb{CP}^2$ .

Received April 17, 2004. Revised August 12, 2005.

<sup>2000</sup> Mathematics Subject Classification: 14J27, 14J28, 53D05, 57M12, 57M60, 57R20, 57R57.

Key words and phrases: Seiberg-Witten invariant, symplectic 4-manifold, anti-symplectic involution, double branched cover.

This work was supported by grant (R01-2004-000-10870-0) from the Basic Research Program of the Korea Science and Engineering Foundation and the second author was supported by National Institute for Mathematical Sciences (NIMS).

For k = 1, there are the Hirzebruch surfaces  $\Sigma_n$  (n : odd) which are known to be diffeomorphic to  $\mathbb{CP}^2 \sharp \overline{\mathbb{CP}}^2$ .

When 0 < k < 9, up to now it has not been known whether  $\mathbb{CP}^2 \sharp k \overline{\mathbb{CP}}^2$  can have infinite family of smooth structures. For a long time the smallest known example was the Barlow surface [2]. D. Kotschick proved in [19] that the Barlow surface, which was known to be homeomorphic to  $\mathbb{CP}^2 \sharp 8 \overline{\mathbb{CP}}^2$ , is not diffeomorphic to it.

Recently, J. Park [20] found an example with exotic structure on  $\mathbb{CP}^2\sharp 7\overline{\mathbb{CP}}^2$ . A. Stipsicz and Z. Szabó [23] used a technique similar to Park's construction and constructed an exotic manifold of type (1,6). Furthermore, R. Fintushel and R. J. Stern [12] introduce a new technique to show that  $\mathbb{CP}^2\sharp k\overline{\mathbb{CP}}^2$  does have an infinite family of smooth structures when k=6,7,8.

When k=5, J. Park, A. Stipsicz, and Z. Szabó showed in [21] that there exist infinitely many pairwise non-diffeomorphic 4-manifolds which are all homeomorphic to  $\mathbb{CP}^2\sharp 5\overline{\mathbb{CP}}^2$  using Fintushel and Stern's technique of knot surgery in a double node neighborhood with a particular form of generalized rational blow-down.

When k=9, S. K. Donaldson showed in [11] that two well-known simply-connected algebraic surfaces E(1) and S(2,3) of type (1,9) are not diffeomorphic. Here E(1) is  $\mathbb{CP}^2\sharp 9\overline{\mathbb{CP}}^2$  as being equipped with an elliptic fibration and S(p,q) is an algebraic surface which is obtained from  $\mathbb{CP}^2\sharp 9\overline{\mathbb{CP}}^2$  by performing log transformations at two generic elliptic smooth fibers of  $\pi:\mathbb{CP}^2\sharp 9\overline{\mathbb{CP}}^2\to\mathbb{CP}^1$  with multiplicities p and q, respectively.

I. Dolgachev showed in [10] that if the greatest common divisor of p and q, g.c.d (p,q) = 1, then S(p,q) is simply-connected and of type (1,9).

When k>9, R. Friedman and J. W. Morgan showed in [14] that  $\mathbb{CP}^2 \sharp k \overline{\mathbb{CP}}^2$  has infinitely many smooth structures underlying algebraic surface. They found algebraic surfaces  $\tilde{S}(p,q)$  with type (1,9+r), r>0, by blowing up at r points of S(p,q) where p and q are relatively prime numbers greater than 1. They showed that  $\tilde{S}(p,q)$  is not diffeomorphic to a rational surface.

It still will be interesting to find a new exotic 4-manifold with type  $(1,k), k \in \mathbb{N}$ . In this paper, we construct a new exotic 4-manifold X which is not diffeomorphic to  $\tilde{S}(p,q)$  with type (1, 13). The manifold X is homeomorphic to  $\mathbb{CP}^2\sharp 13\overline{\mathbb{CP}}^2$ , but not diffeomorphic to it. Moreover

X has trivial Seiberg-Witten invariants for all Spin<sup>c</sup>-structures of X and has no symplectic structure.

#### 2. Construction of new four-manifold

Let  $(X, \omega)$  be a closed, symplectic, 4-manifold with a symplectic structure  $\omega$ . A smooth map  $\sigma: X \to X$  is an anti-symplectic involution if and only if  $\sigma^*\omega = -\omega$  and  $\sigma^2 = \text{Id}$ . If X is a Kähler surface, then  $\sigma$  is anti-symplectic if and only if  $\sigma$  is anti-holomorphic, that is,  $\sigma_* \circ J = -J \circ \sigma_*$  for the complex structure J on X.

When X is a Kähler surface, we will say that  $(X, \sigma)$  is a real manifold and  $X^{\sigma}$  is the fixed point sets of  $\sigma$  on X.

We start with a Silhol's real manifold  $(Y, \rho)$  which is constructed as follows: in  $\mathbb{CP}^2$ , take four real points  $x_i$ ,  $i = 1, \ldots, 4$ , in general position and choose a conic  $C_0$  passing through all the  $x_i$ .

Choose another point b different from the  $x_i$  on  $C_0$ , i = 1, ..., 4. If  $D_i$  denotes the line through b and  $x_i$ , then we can define a holomorphic involution

$$T: \mathbb{CP}^2 - \{C_0 \cup_{i=1}^4 D_i\} \longrightarrow \mathbb{CP}^2 - \{C_0 \cup_{i=1}^4 D_i\}$$

in the following way: for any point u in the domain above, the five points  $u, x_i, i = 1, ..., 4$ , determine a unique conic  $C_u$  which intersects the line  $D_u = \overline{ub}$  at u and another point, which is defined to be T(u). See the following figure.

Since the complex conjugation c is an anti-holomorphic involution, we have  $(T \circ c)_* \circ J = T_* \circ c_* \circ J = T_* \circ (-J \circ c_*)$ .

Since T is a holomorphic involution, we have  $T_* \circ J = J \circ T_*$  and then

$$(T \circ c)_* \circ J = T_* \circ c_* \circ J = T_* \circ (-J \circ c_*)$$
  
=  $-T_* \circ J \circ c_* = -J \circ (T_* \circ c_*) = -J \circ (T \circ c)_*.$ 

Thus composing T with the conjugation c, there is an anti-holomorphic involution  $\rho_0 = T \circ c$  on  $\mathbb{CP}^2 - \{C_0 \cup_{i=1}^4 D_i\}$  which extends to an anti-holomorphic involution  $\rho$  on the manifold obtained by blowing up  $\mathbb{CP}^2$  at the five points  $b, x_1, x_2, x_3, x_4$ .

Let Y be the resulting manifold of type  $\mathbb{CP}^2 \sharp 5\overline{\mathbb{CP}}^2$ . Then by R. Shilhol, the fixed point set  $Y^{\rho}$  of  $\rho$  is  $S^2 \coprod S^2$  and the quotient  $Y/\rho \cong \sharp 4\overline{\mathbb{CP}}^2$ . For details, see [22].

In Y, take distinct four points  $x_i$  (not on the exceptional curves in  $\mathbb{CP}^2 \sharp 5 \overline{\mathbb{CP}}^2$ ) such that  $\rho(x_i) = x_{i+1}$ , i = 5, 7 and assume that all points  $x_i$ ,  $i = 1, \ldots, 8$ , and b are distinct.



FIGURE 1

Let  $X_0$  be the blow-up of  $(Y, \rho)$  at the four points  $x_i$ , i = 5, 6, 7, 8. Then the anti-holomorphic involution  $\rho$  on Y extends canonically to an anti-holomorphic involution  $\sigma_0$  on the manifold  $X_0 = \mathbb{CP}^2 \sharp 9\overline{\mathbb{CP}}^2$  such that the diffeomorphism type of its fixed point set and the quotient are respectively  $X_0^{\sigma} = S^2 \coprod S^2$  and  $X_0/\sigma_0 = \sharp 6\overline{\mathbb{CP}}^2$ .

From now, let  $X_i$  be the manifold  $X_0$  and  $\sigma_i: X_i \to X_i$  be the anti-holomorphic involution  $\sigma_0$ , i = 1, 2.

Let  $F_i$  and  $F'_i = \sigma_i(F_i)$  be generic fibers (Kähler torus) of  $X_i$  such that  $F_i \cap F'_i = \emptyset$ , i = 1, 2. Let  $N(F_i)$  and  $N(F'_i)$  be small tubular neighborhoods of  $F_i$  and  $F'_i$  with radius  $\epsilon > 0$  respectively, i = 1, 2.

The fibration on  $X_i$  determines a canonical normal framing of  $F_i$ , i=1,2. Thus there is a fiber-orientation reversing bundle isomorphism  $\psi_1:N(F_1)\to N(F_2)$ , respecting the given framings and an orientation preserving diffeomorphism  $\phi_1:N(F_1)-F_1\to N(F_2)-F_2$  by composing  $\psi_1$  with the diffeomorphism

$$f: r \mapsto \sqrt{\epsilon^2 - r^2}, \qquad 0 < r < \epsilon,$$

that turns each punctured normal fiber inside out.

Similarly, the fibration on  $X_i$  determines a canonical normal framing of  $\sigma_i(F_i) = F'_i$ , i = 1, 2, so there is a fiber-orientation reversing bundle isomorphism  $\psi_2 : N(F'_1) \to N(F'_2)$ , respecting the given framings, and orientation preserving diffeomorphism  $\phi_2 : N(F'_1) - F'_1 \to N(F'_2) - F'_2$ .

Let  $X_1\sharp_{\phi_1,\phi_2}X_2$  be a smooth, closed, oriented 4-manifold obtained from  $(X_1-(F_1\amalg F_1'))\amalg (X_2-(F_2\amalg F_2'))$  by using  $\phi_1$  and  $\phi_2$  to identify  $N(F_1)-F_1$  and  $N(F_2)-F_2$  and  $N(F_1')-F_1'$  and  $N(F_2')-F_2'$ , respectively. Denote the resulting manifold  $X_1\sharp_{\phi_1,\phi_2}X_2$  by  $\bar{X}$ .

# Lemma 2.1. The manifold $\bar{X}$ is a symplectic 4-manifold.

*Proof.* The 4-manifold  $\bar{X}$  is obtained from the rational elliptic surfaces  $X_i (= X_0)$  by two fiber sums, i = 1, 2. It is well known that the space  $\bar{X}$  admits a Kähler structure.

Indeed, we can find a symplectic structure  $\omega$  over  $\bar{X}$  for any choice of the gluing maps  $\phi_i$ , i = 1, 2. Let  $\omega_0$  be a Kähler form on  $X_i$ , i = 1, 2.

Let  $K \supset F_1$  and  $\tilde{K} \supset F'_1$  be compact subsets of  $N(F_1)$  and  $N(F'_1)$ , respectively. Furthermore, let  $\eta$  and  $\eta'$  be closed 2-forms compactly supported in  $N(F_2)$  and  $N(F'_2)$ , respectively.

Then, for some O(2)-bundle isomorphisms  $\psi_1': N(F_1) \to N(F_2)$  and  $\psi_2': N(F_1') \to N(F_2')$  which are fiber isotopic to  $\psi_1$  and  $\psi_2$  respectively, the manifold  $(\bar{X}, \omega)$  is obtained from  $(X_1 \coprod X_2 - (K \cup \bar{K} \cup F_2 \cup F_2'), \omega_0 + t_0\eta + t_1\eta')$  by gluing via

$$\xi_1 = f \circ \psi'_1 : N(F_1) - F_1 \to N(F_2) - F_2,$$
  
 $\xi_2 = f \circ \psi'_2 : N(F'_1) - F'_1 \to N(F'_2) - F'_2,$ 

for some sufficiently small, real values  $0 < t_0, t_1 < 1$ .

The gluing maps  $\xi_1$  and  $\xi_2$  are symplectic with respect to the symplectic form  $(\omega_0 + t_0 \eta + t_1 \eta')$ . For details, see [15].

LEMMA 2.2. There is an involution  $\sigma$  on  $\bar{X}$  with  $\coprod_{i=1}^4 S_i^2$  as fixed point sets where  $S_i^2$  is diffeomorphic to the standard 2-sphere, i=1,2,3,4.

*Proof.* Since the manifolds  $X_i = X_0$  and the anti-holomorphic involutions  $\sigma_i = \sigma_0$ , i = 1, 2, we have

$$\phi_2(\sigma_1(x)) = \sigma_2(\phi_1(x)), \quad \phi_1(\sigma_1(x')) = \sigma_2(\phi_2(x'))$$

for all  $x \in N(F_1) - F_1$  and  $x' \in N(F_1') - F_1'$ , and so there is an involution  $\sigma$  on  $\bar{X}$  induced from anti-holomorphic involutions  $\sigma_i = \sigma_0$ , i = 1, 2. In detail, there is a well-defined involution  $\sigma$  on  $\bar{X}$  such that

$$\sigma = \begin{cases} \sigma_i & X_i - (N(F_i) \coprod N(F_i')) \subset \bar{X}, \quad i = 1, 2, \\ \sigma_1(x') = \sigma_2(\phi_2(x')) & (N(F_1) - F_1) \sharp_{\phi_1} (N(F_2) - F_2), \\ \sigma_1(x) = \sigma_2(\phi_1(x)) & (N(F_1') - F_1') \sharp_{\phi_2} (N(F_2') - F_2') \end{cases}$$

for all  $x \in N(F_1) - F_1$  and  $x' \in N(F_1') - F_1'$ .

Since  $X_i^{\sigma_i} = S^2 \coprod S^2 \subset (X_i - (N(F_i) \coprod N(F_i'))), i = 1, 2$ , the fixed point sets of  $\sigma$  in  $\bar{X}$  is the disjoint union of 4 copies of 2-sphere, i.e.,

$$\bar{X}^{\sigma} = \coprod_{i=1}^{4} S_i^2.$$

## 3. Exotic four-manifold

Let  $\bar{X}$  be the symplectic 4-manifold  $X_1\sharp_{\phi_1,\phi_2}X_2$  in Lemma 2.1 which is obtained from  $(X_1-(F_1\coprod F_1'))\coprod (X_2-(F_2\coprod F_2'))$  by using  $\phi_1$  and  $\phi_2$  to identify  $N(F_1)-F_1$  and  $N(F_2)-F_2$ , and  $N(F_1')-F_1'$  and  $N(F_2')-F_2'$ , respectively.

Then the involution  $\sigma$  on  $\bar{X}$  in Lemma 2.2 has fixed point sets  $\bar{X}^{\sigma} = \coprod_{i=1}^4 S_i^2$  where  $S_i^2$  is diffeomorphic to the standard 2-sphere, i=1,2,3,4. Denote the quotient  $\bar{X}/\sigma$  by X. Let  $X_i$ ,  $\sigma_i$ , i=1,2, be the same as in Lemma 2.1.

For the proof of the Theorem 3.2, we briefly review the Seiberg-Witten invariant of X.

Let  $L \to X$  be a complex line bundle satisfying  $c_1(L) = w_2(TX)$  mod 2. This determines a principal Spin<sup>c</sup>-structure on X which induces a unique complex spinor bundle  $W \cong W^+ \oplus W^-$ , where  $W^{\pm}$  is the  $(\pm \frac{1}{2})$ -twisted spinor bundles on X with  $\det(W^{\pm}) \cong L$ .

For a unitary connection A in the set of all Riemannian connections on L, a positive spinor field  $\Psi \in \Gamma(W^+)$ , and a real valued, self-dual 2-form  $\delta$  on X, the perturbed Seiberg-Witten equations are defined by

$$\begin{cases} F_A^+ + i\delta = q(\Psi) \\ D_A \Psi = 0, \end{cases}$$

where  $D_A: \Gamma(W^+) \to \Gamma(W^-)$  is the Dirac operator associated with the connection  $A. q: C^{\infty}(W^+) \to \Omega_X^+(i\mathbb{R})$  is a quadratic map defined by  $q(\Psi) = \Psi \otimes \Psi^* - \frac{||\Psi||^2}{2} \mathrm{Id}$ .

Let M be the moduli space of the gauge equivalence classes of all solutions of the perturbed Seiberg-Witten equations. Then M is a smooth manifold with its dimension dim  $M = \frac{1}{4}(c_1(L)^2[X] - 2\chi(X) - 3\mathrm{sign}(X))$ , where  $\chi(X)$  is the Euler characteristic of X and  $\mathrm{sign}(X)$  is the signature of X.

Note that if the metric on X is chosen so that the perturbed Seiberg-Witten equations admit no reducible solutions, then M is compact. Under these conditions, if dim  $M=2d\geq 0$ , then the Seiberg-Witten invariant is defined by

$$\int_M c_1(M_0)^d,$$

the integral of the maximal power of the Chern class of the circle bundle  $M_0 \longrightarrow M$ , where  $M_0$  is the framed moduli space.

If  $\dim M$  is odd or negative then the Seiberg-Witten invariant is defined to be zero. For details, see [6] and [7].

THEOREM 3.1. The quotient X is simply-connected, smooth 4-manifold which is homeomorphic to  $\mathbb{CP}^2 \sharp 13\overline{\mathbb{CP}}^2$ .

*Proof.* For  $\bar{X}$ , since we have a map  $\tilde{p}: \bar{X} \to T^2$  which induces an isomorphism between  $\pi_1(\bar{X})$  and  $\pi_1(T^2)$ , if we consider the quotient map  $\tilde{p}': \bar{X}/\sigma \to T^2/c$  then  $\tilde{p}'$  is an isomorphism between  $\pi_1(\bar{X}/\sigma)$  and  $\pi_1(T^2/c)$ .

Thus we have  $\pi_1(X) = \pi_1(T^2/c) = \pi_1(S^4) = 0$  and so X is simply-connected.

The Euler characteristic and the signature of  $\bar{X}$  are

$$\chi(\bar{X}) = \chi(X_1) + \chi(X_2) = 24,$$
  
 $sign(\bar{X}) = sign(X_1) + sign(X_2) = -16.$ 

Let  $\pi_i: X_i \to X_i/\sigma_i = X_i'$  be the projection map, i = 1, 2. Since  $X_i$  is a smooth, simply-connected double cover of  $X_i'$  branched along  $S^2 \coprod S^2$ , by [5] and [25] the quotient  $X_i'$  is smooth and simply-connected, i = 1, 2.

The Euler characteristic and signature of  $X_i'$  are

$$\chi(X_i') = \frac{1}{2}(\chi(X_i) + 2\chi(S^2)) = 6 + \chi(S^2),$$
  

$$\operatorname{sign}(X_i') = \frac{1}{2}(\operatorname{sign}(X_i) + 2S^2 \cdot S^2) = -4 + S^2 \cdot S^2, i = 1, 2.$$

Since each  $S^2 \subset X_i^{\sigma_i} = S^2 \coprod S^2$  is a Lagrangian surface, it satisfies  $\chi(S^2) + S^2 \cdot S^2 = 0$  and its self-intersection number  $S^2 \cdot S^2 = -2$ , i = 1, 2. Then  $b_2^+(X_i') = 0$  and  $b_2^-(X_i') = 6$  and we conclude that the quotient  $X_i/\sigma_i = X_i' = \sharp 6\overline{\mathbb{CP}}^2$  is not a symplectic 4-manifold, i = 1, 2.

Since  $\sigma_i(F_i) = F_i'$ , we have  $\pi_i(F_i) = \pi_i(F_i') \subset X_i'$ , i = 1, 2.

Denote  $\pi_i(F_i) = \pi_i(F_i')$  by  $\tilde{F}_i$  and let  $N(F_i')$  be a small tubular neighborhood of  $F_i'$  with radius  $\epsilon > 0$ , i = 1, 2.

By [4] and [9], the anti-holomorphic involution  $\sigma_i$  sends  $N(F_i)$  to  $N(F_i')$  respectively, i = 1, 2. Then  $\pi_i(N(F_i)) = \pi_i(N(F_i'))$  is a small tubular neighborhood of  $\tilde{F}_i$  with radius  $\epsilon > 0$ , i = 1, 2. Let  $N(\tilde{F}_i)$  be the tubular neighborhood of  $\tilde{F}_i$ , i = 1, 2.

By [4] and [5],  $\tilde{F}_i \cdot \tilde{F}_i = 2F_i \cdot F_i = 2F_i' \cdot F_i' = 0$ , i = 1, 2. Thus the  $\tilde{F}_i$  are tori with trivial self-intersection numbers and so we can identify tubular neighborhoods  $N(\tilde{F}_i)$  with trivial normal bundles, i = 1, 2. Then there are fiber-orientation reversing bundle isomorphisms  $\tilde{\psi} : N(\tilde{F}_1) \to N(\tilde{F}_2)$ .

Let  $X_1'\sharp_{\tilde{\phi}}X_2'$  be the smooth, closed, oriented 4-manifold obtained from  $(X_1'-\tilde{F}_1) \coprod (X_2'-\tilde{F}_2)$  identifying  $N(\tilde{F}_1)-\tilde{F}_1$  with  $N(\tilde{F}_2)-\tilde{F}_2$  by using  $\tilde{\phi}=f\circ\tilde{\psi}$ .

Since  $X_i/\sigma_i = X_i'$ , i = 1, 2, and  $\phi_2 \circ \sigma_1 = \sigma_2 \circ \phi_1$ , we conclude that the quotient X is diffeomorphic to  $X_1' \sharp_{\tilde{\phi}} X_2'$ .

Since  $\chi(S^2) = 2$  and  $S^2 \cdot S^2 = -2$ , we have Euler characteristic and signature of X as follows:

$$\chi(X) = \chi(X_1') + \chi(X_2') = 12 + 2\chi(S^2) = 16,$$
  

$$\operatorname{sign}(X) = \operatorname{sign}(X_1') + \operatorname{sign}(X_2') = -8 + 2S^2 \cdot S^2 = -12.$$

Thus we have  $b_2^+(X) = 1$  and  $b_2^-(X) = 13$  and so the space X is of type (1,13). By M. Freedman [13] X is homeomorphic to  $\mathbb{CP}^2 \sharp 13\overline{\mathbb{CP}^2}$ .

THEOREM 3.2. The quotient X is not symplectic and has vanishing Seiberg-Witten invariants for all  $Spin^c$ -structures of X.

*Proof.* By Theorem 3.1, the quotient  $X = \bar{X}/\sigma$  is diffeomorphic to  $X_1' \sharp_{\tilde{\phi}} X_2'$ . If  $X_1' \sharp_{\tilde{\phi}} X_2'$  is a symplectic 4-manifold then there is a non-trivial solution  $(A, \psi)$  of the Seiberg-Witten equations for the canonical class of  $X_1' \sharp_{\tilde{\phi}} X_2'$ .

Let  $T^3 \subset X_1' \sharp_{\tilde{\phi}} X_2'$  be a 3-dimensional torus dividing  $X_1' \sharp_{\tilde{\phi}} X_2'$  into two pieces  $X_1' - N(\tilde{F}_1)$  and  $X_2' - N(\tilde{F}_2)$ .

Cutting  $X_1' \sharp_{\tilde{\phi}} X_2'$  along the  $T^3$ ,  $(A, \psi)$  sends to  $(A_1 \vee A_2, \psi_1 \vee \psi_2)$  where  $(A_i, \psi_i)$  are solutions of the Seiberg-Witten equations on the spaces  $X_i' - N(\tilde{F}_i)$  with cylindrical ends, i = 1, 2.

This means that if  $(A, \psi)$  is a non-trivial solution of the Seiberg-Witten equations on  $X'_1 \sharp_{\bar{\phi}} X'_2$ , then at least one of  $(A_i, \psi_i)$  is a non-trivial solution of the Seiberg-Witten equations, i = 1, 2.

However, it is impossible. Indeed, by the additivity of Euler characteristic

$$\chi(X'_i) = \chi(X'_i - N(\tilde{F}_i)) + \chi(N(\tilde{F}_i)) - \chi((X'_i - N(\tilde{F}_i)) \cap N(\tilde{F}_i))$$
  
=  $\chi(X'_i - N(\tilde{F}_i)), \quad i = 1, 2.$ 

By the Novikov additivity of signature,

$$\operatorname{sign}(X_i') = \operatorname{sign}(X_i' - N(\tilde{F}_i)) + \operatorname{sign}(N(\tilde{F}_i)) = \operatorname{sign}(X_i' - N(\tilde{F}_i)), i = 1, 2.$$

Thus we conclude that  $2 - 2b_1(X_i') + 2b_2^+(X_i') = 2 - 2b_1(X_i' - N(\tilde{F}_i)) + 2b_2^+(X_i' - N(\tilde{F}_i)), i = 1, 2.$ 

Since  $X_1'\sharp_{\tilde{\phi}}X_2'$  is simply-connected and obtained from  $(X_1'-\tilde{F}_1)\coprod(X_2'-\tilde{F}_2)$  identifying  $N(\tilde{F}_1)-\tilde{F}_1$  with  $N(\tilde{F}_2)-\tilde{F}_2$  by using the map  $\tilde{\phi}=f\circ\tilde{\psi},$   $N(\tilde{F}_i)-\tilde{F}_i$  are simply-connected and so  $X_i'-N(\tilde{F}_i)$  are simply-connected, i=1,2.

Since  $X_i$  are simply-connected and  $b_2^+(X_i') = 0$ , we have  $b_2^+(X_i' - N(\tilde{F}_i)) = 0$ . Thus by the definition of the Seiberg-Witten invariant as above, since  $b_2^+(X_i' - N(\tilde{F}_i)) = 0$ , there is no non-trivial solution of the Seiberg-Witten equations over the cylindrical end spaces  $X_i' - N(\tilde{F}_i)$ , i = 1, 2.

Thus we conclude that there is no non-trivial solution of the Seiberg-Witten equations on  $X_1'\sharp_{\tilde{\phi}}X_2'$  and so the quotient X is not symplectic and has vanishing Seiberg-Witten invariants for all  $\operatorname{Spin}^c$ -structures of X.

THEOREM 3.3. The quotient X is homeomorphic, but not diffeomorphic to  $\tilde{S}(p,q)$  with type (1,13).

*Proof.* Since X has type (1,13), by M. Freedman [13] X is homeomorphic to  $\mathbb{CP}^2\sharp 13\overline{\mathbb{CP}}^2$ .

Since the algebraic surface  $\tilde{S}(p,q)$  is the blow-up of Dolgachev surface S(p,q) at 4 points where p and q are respectively prime numbers greater than 1, it is of type (1,13) and so it is homeomorphic to  $\mathbb{CP}^2\sharp 13\overline{\mathbb{CP}}^2$ .

Let  $C_1$  be the unique chamber of  $\tilde{S}(p,q) = S(p,q) \sharp 4\overline{\mathbb{CP}}^2$  for which  $C_1 \cap \operatorname{Im}(i) \neq \emptyset$ , where  $i: H^2(S(p,q);\mathbb{R}) \to H^2(S(p,q)\sharp 4\overline{\mathbb{CP}}^2;\mathbb{R})$  is the inclusion.

By Z. Szabó [24], the blow-up formula shows that every basic class of  $C_1$  can be written as  $tK + \sum_{i=1}^4 (-1)^{\delta_i} E_i$  with some  $|t| \leq 1$ ,  $\delta_i = 0, 1$  where K is the canonical class of  $\tilde{S}(p,q)$  and  $E_i$  denotes the exceptional class of the i-th copy  $\overline{\mathbb{CP}}^2$ .

Since, by Theorem 3.2, there is no non-trivial solution of the Seiberg-Witten equations over the quotient  $X = X_1 \sharp_{\phi_1,\phi_2} X_2/\sigma$ , we conclude the quotient X is not diffeomorphic to  $\tilde{S}(p,q)$  with type (1,13).

#### References

- S. Akbulut, On quotients of complex surfaces under complex conjugation, J. Reine Angew. Math. 447 (1994), 83–90.
- [2] R. Barlow, A simply connected surface of general type with  $p_g = 0$ , Invent. Math. **79** (1985), no. 2, 293–301.
- [3] W. Barth, C. Peters, and A. Van de Ven, Compact Complex Surfaces, Springer, Heidelberg, 1984.
- [4] G. E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972.
- [5] Y. S. Cho, Cyclic group actions on gauge theory, Differential Geom. Appl. 6 (1996), no. 1, 87–99.
- [6] Y. S. Cho and D. Joe, Anti-symplectic involutions with Lagrangian fixed loci and their quotients, Proc. Amer. Math. Soc. 130 (2002), no. 9, 2797–2801.
- [7] Y. S. Cho and Y. H. Hong, Cyclic group actions on 4-manifold, Acta Math. Hungar. 94 (2002), no. 4, 333-350.
- [8] \_\_\_\_\_\_, Seiberg-Witten invariants and (anti-)symplectic involutions, Glasg. Math. J. 45 (2003), no. 3, 401–413.
- [9] \_\_\_\_\_\_, Anti-symplectic involutions on non-Kähler symplectic 4-manifolds, Preprint.
- [10] I. Dolgachev, Algebraic surfaces with  $p_g = q = 0$ , in Algebraic surfaces, CIME 1977, Liguori Napoli, 1981, 97–215.
- [11] S. Donaldson, La topologie differentielle des surfaces complexes, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 6, 317–320.
- [12] R. Fintushel and R. J. Stern, Double node neighborhoods and families of simply connected 4-manifolds with  $b^+=1$ , J. Amer. Math. Soc. 19 (2006), no. 1, 171–180.
- [13] M. Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), no. 3, 357–453.
- [14] R. Friedman and J. W. Morgan, On the diffeomorphism types of certain algebraic surfaces. I, J. Differential Geom. 27 (1988), no. 2, 297–369.
- [15] R. E. Gompf, A new construction of symplectic manifolds, Ann. of Math.(2) 142 (1995), no. 3, 527-595.
- [16] R. E. Gompf and T. S. Mrowka, Irreducible 4-manifolds need not be complex, Ann. of Math.(2) 138 (1993), no. 1, 61-111.
- [17] R. E. Gompf and A. I. Stipsciz, 4-Manifolds and Kirby Calculus, Graduate Studies in Mathematics, Vol. 20, AMS Providence, Rhode Island, 1999.
- [18] R. Kirby, Problems in low-dimensional topology, AMS/IP Stud. Adv. Math., 2.2, Geometric topology (Athens, GA, 1993), 35–473.
- [19] D. Kotschick, On manifolds homeomorphic to  $\mathbb{CP}^2 \sharp 8\overline{\mathbb{CP}^2}$ , Invent. Math. 95 (1989), no. 3, 591–600.
- [20] J. Park, Simply connected symplectic 4-manifolds with  $b_2^+ = 1$  and  $c_1^2 = 2$ , Invent. Math. 159 (2005), no. 3, 657–667.
- [21] J. Park, A. I. Stipsicz, and Z. Szabó, Exotic smooth structures on  $\mathbb{CP}^2\sharp 5\overline{\mathbb{CP}^2}$ , Math. Res. Lett. 12 (2005), no. 5-6, 701–712.
- [22] R. Silhol, Real algebraic surfaces, Lecture Notes in Math. vol. 1392, Springer-Verlag, 1989.

- [23] A. Stipsicz and Z. Szabó, An exotic smooth structure on  $\mathbb{CP}^2\sharp 6\overline{\mathbb{CP}^2}$ , Geom. Topol. 9 (2005), 813–832.
- [24] Z. Szabó, Exotic 4-manifolds with  $b_2^+=1$ , Math. Res. Lett. 3 (1996), no. 6, 731–741.
- [25] S. Wang, Gauge theory and involutions, Oxford University Thesis, 1990.

Yong Seung Cho Department of Mathematics Ehwa Women's University Seoul 120-750, Korea E-mail: yescho@ewha.ac.kr

Yoon Hi Hong National Institute for Mathematical Sciences 385-16, Doryong-dong, Yuseong-gu Daejeon 305-340, Korea *E-mail*: yoonhihong@hanmail.net