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EXOTIC SMOOTH STRUCTURE ON CP2{13CP"

YoNG SEUNG CHO AND YOON H1 Hong

ABSTRACT. In this paper, we construct a new exotic smooth 4-
manifold X which is homeomorphic, but not diffeomorphic, to

CP2ﬁ13@ﬁ2. Moreover the manifold X has vanishing Seiberg-Witten
invariants for all Spin®-structures of X and has no symplectic struc-
ture.

1. Introduction

We say that a simply connected, oriented, smooth 4-manifold X has
type (1,k) for some integer k > 1 if the self-intersection form gqps :
H?*(X;Z) — Z defined by qu(z) = [;,z Uz is isomorphic to the form
z? —y? — - —y2 on ZF*! with a basis {z1,v1,. .., Yk}

By M. Freedman’s result [13], any two simply-connected, oriented
4-manifolds of type (1,k) are homeomorphic. However S. K. Donald-
son showed in [11] that not all such manifolds are diffeomorphic. This
provides the first example of simply-connected h-cobordant manifolds
which are not diffeomorphic. In fact, he showed that there are two
simply-connected algebraic surfaces of type (1,9) which are not diffeo-
morphic.

Many people consider the problem of classifying up to diffeomorphism
the complex surfaces homeomorphic to some CP2ﬁk@2, that is, the

problem to find exotic smooth structures on (CIP’2jik@2.
When k& = 0, by Yau’s result, any complex surface which is homeo-
morphic to CP? is diffeomorphic to CP?.
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For k = 1, there are the Hirzebruch surfaces ¥,, (n : odd) which are
known to be diffeomorphic to (C]P’Ztl@2.

When 0 < k£ < 9, up to now it has not been known whether (C]P’2jjk(C_]P’2
can have infinite family of smooth structures. For a long time the smali-
est known example was the Barlow surface [2]. D. Kotschick proved in
[19] that the Barlow surface, which was known to be homeomorphic to
CIPZjiS@Q, is not diffeomorphic to it.

Recently, J. Park [20] found an example with exotic structure on
CP2ﬂ7@2. A. Stipsicz and Z. Szabé [23] used a technique similar to
Park’s construction and constructed an exotic manifold of type (1,6).
Furthermore, R. Fintushel and R. J. Stern [12] introduce a new technique

to show that CIP’%UC@Z does have an infinite family of smooth structures
when £ =6,7,8.

When k = 5, J. Park, A. Stipsicz, and Z. Szabé showed in [21] that
there exist infinitely many pairwise non-diffeomorphic 4-manifolds which
are all homeomorphic to (CIP235TCTP2 using Fintushel and Stern’s tech-
nique of knot surgery in a double node neighborhood with a particular
form of generalized rational blow-down.

When k£ = 9, S. K. Donaldson showed in [11] that two well-known
simply-connected algebraic surfaces E(1) and S(2,3) of type (1,9) are
not diffeomorphic. Here E(1) is (CIP’Z]:IS)@I_D2 as being equipped with an
elliptic fibration and S(p,q) is an algebraic surface which is obtained
from (C]P’2ﬁ9ﬁ2 by performing log transformations at two generic ellip-
tic smooth fibers of 7 : CP2ﬂ9@2 — CP! with multiplicities p and g,
respectively.

I. Dolgachev showed in [10] that if the greatest common divisor of
p and g, g.cd (p,q) = 1, then S(p,q) is simply-connected and of type
(1,9). .

When k£ > 9, R. Friedman and J. W. Morgan showed in [14] that

CP2ﬁk@2 has infinitely many smooth structures underlying algebraic
surface. They found algebraic surfaces S(p, ¢) with type (1,94r),7 > 0,
by blowing up at r points of S(p, q) where p and ¢ are relatively prime
numbers greater than 1. They showed that S(p, ¢) is not diffeomorphic
to a rational surface.

It still will be interesting to find a new exotic 4-manifold with type
(1,k), k € N. In this paper, we construct a new exotic 4-manifold X
which is not diffeomorphic to .S (p, q) with type (1, 13). The manifold X

is homeomorphic to CP2ﬁ13@2, but not diffeomorphic to it. Moreover
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X has trivial Seiberg-Witten invariants for all Spin®-structures of X and
has no symplectic structure.

2. Construction of new four-manifold

Let (X,w) be a closed, symplectic, 4-manifold with a symplectic
structure w. A smooth map ¢ : X — X is an anti-symplectic involu-
tion if and only if 0*w = —w and o2 = Id. If X is a Kahler surface,
then ¢ is anti-symplectic if and only if ¢ is anti-holomorphic, that is,
0.0 J = —J oo, for the complex structure J on X.

When X is a Kahler surface, we will say that (X, o) is a real manifold
and X7 is the fixed point sets of o on X.

We start with a Silhol’s real manifold (Y, p) which is constructed as
follows: in CPP?, take four real points z;, i = 1,...,4, in general position
and choose a conic Cy passing through all the x;.

Choose another point b different from the z; on Cy, ¢ = 1,...,4. If
D; denotes the line through b and z;, then we can define a holomorphic
involution

T :CP? — {Co UL, D;} — CP? — {Co U}, D;}
in the following way: for any point « in the domain above, the five points
u,T;, ¢ = 1,...,4, determine a unique conic C, which intersects the line
D, = ub at u and another point, which is defined to be T'(u). See the
following figure. v
Since the complex conjugation c is an anti-holomorphic involution,
we have (T'oc)yoJ =T,ocioJ =Ty o (=J ocy).
Since T is a holomorphic involution, we have T, oJ = JoT, and then
(Toc)soJ=TyockoJ =Tyo(—Jock)
=—TioJocy=—Jo(Thocy) =—Jo(Toc).

‘Thus composing 7' with the conjugation ¢, there is an anti-holomor-
phic involution pg = T o ¢ on CP? — {Cp UL, D;} which extends to an
anti-holomorphic involution p on the manifold obtained by blowing up
CP? at the five points b, x1, x2, 23, T4.

Let Y be the resulting manifold of type (C]P’2tt5@2. Then by R. Shil-
hol, the fixed point set Y of p is S2I152 and the quotient Y/p = §4CP".
For details, see [22]. »

In Y, take distinct four points z; (not on the exceptional curves in
CP2ﬁ5@2) such that p(x;) = zi+1, 1 = 5,7 and assume that all points
zi,t=1,...,8, and b are distinct.
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FIGURE 1

Let Xp be the blow-up of (Y, p) at the four points z;, i = 5,6,7,8.
Then the anti-holomorphic involution p on Y extends canonically to an
anti-holomorphic involution oy on the manifold Xy = (CIP’2t19@P72 such
that the diffeomorphism type of its fixed point set and the quotient are
respectively X¢ = S2I1.5% and Xo/oq = §6CP".

From now, let X; be the manifold Xy and o; : X; — X; be the
anti-holomorphic involution aq, ¢ = 1, 2.

Let F; and F] = 0;(F;) be generic fibers (Kahler torus) of X, such
that F; N F] = (Z) i = 1,2. Let N(F;) and N(F!) be small tubular
neighborhoods of F; and Fz-' with radius ¢ > 0 respectively, ¢ = 1, 2.

The fibration on X; determines a canonical normal framing of Fj,
t = 1, 2. Thus there is a fiber-orientation reversing bundle isomorphism
1 : N(F1) — N(F2), respecting the given framings and an orientation
preserving diffeomorphism ¢ : N(Fy) — Fy — N(F3) — F» by composing
in with the diffeomorphism ‘

fir— Ve —r2 0<r<e,

that turns each punctured normal fiber inside out.

Similarly, the fibration on X; determines a canonical normal framing
of 0;(F;) = F], i = 1,2, so there is a fiber-orientation reversing bundle
isomorphism 95 : N(F]) — N(F3), respecting the given framings, and
orientation preserving diffeomorphism ¢3 : N(F]) — F{ — N(F3;) — F}.
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Let X1fl4;, 4,X2 be a smooth, closed, oriented 4-manifold obtained
from (X; — (Fy U FY)) 1 (X, — (F5 L F})) by using ¢, and ¢ to identify
N(F1)—Fy and N(F;)—F; and N(F])— F| and N(Fj})— F;, respectively.
Denote the resulting manifold Xif4,,4,X2 by X.

LEMMA 2.1. The manifold X is a symplectic 4-manifold.

Proof. The 4-manifold X is obtained from the rational elliptic sur-
faces X;(= Xo) by two fiber sums, ¢ = 1,2. It is well known that the
space X admits a Kahler structure.

Indeed, we can find a symplectic structure w over X for any choice
of the gluing maps ¢;, i = 1,2. Let wg be a Kéhler form on X;, 7 =1,2.

Let K D F; and K D F! be compact subsets of N(F;) and N(F}),
respectively. Furthermore, let 1 and 1’ be closed 2-forms compactly
supported in N(F;) and N(F}), respectively.

Then, for some O(2)-bundle isomorphisms ¢} : N(F1) — N(F:) and
Yy : N(F{) — N(F3) which are fiber isotopic to 1, and 1, respectively,
the manifold (X, w) is obtained from (X; 11 Xo — (KUK UF, U F}), wo+
ton + t17') by gluing via

&= foy) : N(F1) — F1 — N(Fy) — Fy,
€= foy: N(F) — F| — N(F;) - F,
for some sufficiently small, real values 0 < tg,#; < 1.

The gluing maps £&; and & are symplectic with respect to the sym-
plectic form (wp + ton + t177’). For details, see [15]. O

LEMMA 2.2. There is an involution o on X with II%_; S? as fixed point
sets where S? is diffeomorphic to the standard 2-sphere, i = 1,2,3,4.

Proof. Since the manifolds X; = X and the anti-holomorphic invo-
lutions o; = 09, i = 1, 2, we have

p2(01(2)) = 0a(p1(x)), b1(01(z')) = o2(P2(2"))

for all z € N(Fy)—Fy and 2’ € N(F})— Fj, and so there is an involution
o on X induced from anti-holomorphic involutions o; = 09, i = 1,2. In
detail, there is a well-defined involution o on X such that

o, X;— (N(F)UNE)cX, i=12,
o =1¢ 01(z') = a2(p2(2))  (N(F1) — Fi)lg, (N(F2) — F2),
o1(z) = o2(¢1(2))  (N(FL) — Flg, (N(F3) — F3)
for all z € N(Fy) — F) and ' € N(F]) — F}.
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Since X" = S211 8%  (X; — (N(F;) LI N(F)))), ¢ = 1,2, the fixed
point sets of ¢ in X is the disjoint union of 4 copies of 2-sphere, i.e.,

XU == Hleszz

3. Exotic four-manifold

Let X be the symplectic 4-manifold X 11¢1,4. X2 in Lemma 2.1 which
is obtained from (X; — (F1 I F{)) 1 (X, — (F> 11 F;)) by using ¢; and ¢2
to identify N(F1) —Fy and N(Fy)— F>, and N(F])— F| and N(F3)— F},
respectively.

Then the involution ¢ on X in Lemma. 2.2 has fixed point sets X =
I_If:lSz-2 where 52 is diffeomorphic to the standard 2-sphere, i = 1,2, 3,4.
Denote the quotient X /o by X. Let X;, 0y, i = 1,2, be the same as in
Lemma 2.1.

For the proof of the Theorem 3.2, we briefly review the Seiberg-
Witten invariant of X.

Let L — X be a complex line bundle satisfying c;(L) = wq(TX)
mod 2. This determines a principal Spin®-structure on X which induces
a unique complex spinor bundle W = W+ @ W, where W% is the
(i%)—twisted spinor bundles on X with det(W*) ¢ L.

For a unitary connection A in the set of all Riemannian connections
on L, a positive spinor field ¥ € I'(WT), and a real valued, self-dual
2-form é on X, the perturbed Seiberg-Witten equations are defined by

Ft +i6 = q(¥)
Da¥ =0,

where D : T(W) — T'(W™) is the Dirac operator associated with the
connection A. q : C°°(W+) — Q% (iR) is a quadratic map defined by

Let M be the moduh space of the gauge equivalence classes of all so-
lutions of the perturbed Selberg—Wltten equations. Then M is a smooth
manifold with its dimension dim M = (¢ (L)?[X] —2x(X) — 3sign(X)),
where y(X) is the Euler characteristic of X and sign(X) is the signature
of X.

Note that if the metric on X is chosen so that the perturbed Seiberg-
Witten equations admit no reducible solutions, then M is compact.
Under these conditions, if dim M = 2d > 0, then the Seiberg-Witten
invariant is defined by
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/M Cl(MO)d,

the integral of the maximal power of the Chern class of the circle bundle
My — M, where Mj is the framed moduli space.

If dim M is odd or negative then the Seiberg-Witten invariant is de-
fined to be zero. For details, see [6] and [7].

THEOREM 3.1. The quotient X is simply-connected, smooth 4-mani-
fold which is homeomorphic to (C]P’2ﬁ13@2.

Proof. For X, since we ‘have a map p : X — T? which induces an
isomorphism between 71(X) and m,(T?), if we consider the quotient
map 7 : X/o — T?/c then § is an isomorphism between (X /o) and
71(T?/c).

Thus we have m1(X) = m1(T?/c) = m1(S*) = 0 and so X is simply-
connected. B

The Euler characteristic and the signature of X are

X(X) = x(X1) + x(X2) = 24,
sign(X) = sign(X1) + sign(X3) = —16.

Let m; : X; — X;/0; = X be the projection map, ¢ = 1, 2. Since X is
a smooth, simply-connected double cover of X branched along S211.52,
by [5] and [25] the quotient X is smooth and simply-connected, ¢ = 1,2.

The Euler characteristic and signature of X, are

1
(XD = 20X +2x(5%) = 6+ x(52),
sign(X}) = %(sign(Xi) +25%.5%) = -4+ 5%.5%i=1,2.

Since each S? C X[ = S? 11 % is a Lagrangian surface, it satisfies
x(8?)+52-5? = 0 and its self-intersection number $2-92 = -2, = 1,2.
Then b3 (X]) = 0 and b5 (X]) = 6 and we conclude that the quotient
Xijoi=X| = ﬁ6@2 is not a symplectic 4-manifold, 2 = 1, 2.

Since o;(F;) = F}, we have m(F;) = m(F}) Cc X/, i =1,2.

Denote 7;(F,) = m;(F!) by F; and let N(F!) be a small tubular neigh-
borhood of F] with radius e > 0,7 =1, 2.

By [4] and [9], the anti-holomorphic involution o; sends N(F;) to
N(F]) respectively, ¢ = 1,2. Then m;(N(F;)) = m(N(F})) is a small
tubular neighborhood of F with radius € > 0, 5 = 1,2. Let N(F}) be the
tubular neighborhood of F,i=1,2
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By (4] and [5], F;- F; = 2F;-F; = 2F!-F/ = 0,4 = 1,2. Thus the F; are
tori with trivial self-intersection numbers and so we can identify tubular
neighborhoods N(F;) with trivial normal bundles, i =1,2. Then there
are fiber-orientation reversing bundle isomorphisms ¢ : N(Fy) — N(Eb).

Let X1 X3 be the smooth, closed, oriented 4-manifold obtained from
(X{ — F1) I (X} — Fy) identifying N(Fy) — Fy with N(F) — F, by using
¢p=fo1.

Since X;/o; = X[, 1 = 1,2, and ¢2 0 01 = 02 0 ¢1, we conclude that
the quotient X is diffeomorphic to X1f3X5.

Since x(S%) = 2 and S? - S% = —2, we have Euler characteristic and
signature of X as follows:

X(X) = x(X1) + x(Xp) = 12+ 2x(5%) = 16,
sign(X) = sign(X]) + sign(X}) = -8 + 28% . §2 = —12.

Thus we have b3 (X) = 1 and b; (X) = 13 and so the space X is of

type (1,13). By M. Freedman [13] X is homeomorphic to CP2ﬁ13@2.
O

THEOREM 3.2. The quotient X is not symplectic and has vanishing
Seiberg-Witten invariants for all Spin®-structures of X.

Proof. By Theorem 3.1, the quotient X = X /o is diffeomorphic to
X1#5X5. If X1#5X; is a symplectic 4-manifold then there is a non-trivial
solution (A,v) of the Seiberg-Witten equations for the canonical class
of X{ﬁ qué

Let T3 C X1 3X3 be a 3-dimensional torus dividing X} 5X3 into two
pieces X] — N(F) and X} — N(F3).

Cutting Xiji&Xé along the T3, (A, ) sends to (A1V Az, 11 Vihy) where
(4;, ;) are solutions of the Seiberg-Witten equations on the spaces X —
N(F;) with cylindrical ends, i = 1,2.

This means that if (A4,1) is a non-trivial solution of the Seiberg-
Witten equations on X1§ éXé, then at least one of (A;, ;) is a non-trivial
solution of the Seiberg-Witten equations, i = 1, 2.

However, it is impossible. Indeed, by the additivity of Euler charac-
teristic
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By the Novikov additivity of signature,
sign(X;) = sign(X; — N(F,)) +sign(N(F;)) = sign(X] — N(F)),i = 1,2.

Thus we conclude that 2 — 261 (X!) 4 2b5 (X}) = 2 — 2b1 (X! — N(F;)) +
263 (X! — N(F)), i =1,2.

Since X7}z X is simply-connected and obtained from (X7 — 12331 (0.¢
—F) identifying N (F})—Fy with N(Fy) — F} by using the map ¢ = fo1),
N(F;)—F; are simply-connected and so X/—-N (F}) are simply-connected,
i=1,2.

Since X; are simply-connected and b3 (X!) = 0, we have bj (X] —
N(F,)) = 0. Thus by the definition of the Seiberg-Witten invariant as
above, since b} (X! — N(F;)) = 0, there is no non-trivial solution of the
Seiberg-Witten equations over the cylindrical end spaces X, — N (Fy),
1=1,2.

Thus we conclude that there is no non-trivial solution of the Seiberg-
Witten equations on Xifi; X5 and so the quotient X is not symplectic

and has vanishing Seiberg-Witten invariants for all Spin®-structures of
X. O

THEOREM 3.3. The quotient X is homeomorphic, but not diffeomor-
phic to S(p,q) with type (1,13).

Proof. Since X has type (1,13), by M. Freedman [13] X is homeo-
morphic to C]P’Ztt13@2.

Since the algebraic surface S(p, q) is the blow-up of Dolgachev surface
S(p,q) at 4 points where p and q are respectively prime numbers greater
than 1, it is of type (1,13) and so it is homeomorphic to CP2ﬁ13@2.

Let C; be the unique chamber of S(p,q) = S(p, q)u4@2 for which
Cy N Im(i) # 0, where i : H*(S(p,q);R) — H*(S(p, q)ﬂ4@2;R) is the
inclusion.

By Z. Szabé [24], the blow-up formula shows that every basic class
of Cy can be written as tK + %4, (—1)%E; with some |t| < 1, 6 = 0,1
where K is the canonical class of S (p,q) and E; denotes the exceptional
class of the ¢-th copy CP”.

Since, by Theorem 3.2, there is no non-trivial solution of the Seiberg-
Witten equations over the quotient X = X184, 4,X2/0, we conclude the
quotient X is not diffeomorphic to S(p, q) with type (1, 13). O
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