• Title/Summary/Keyword: $d_{33}$ mode

Search Result 139, Processing Time 0.038 seconds

A 2.4-GHz Low-Power Direct-Conversion Transmitter Based on Current-Mode Operation (전류 모드 동작에 기반한 2.4GHz 저전력 직접 변환 송신기)

  • Choi, Joon-Woo;Lee, Hyung-Su;Choi, Chi-Hoon;Park, Sung-Kyung;Nam, Il-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.91-96
    • /
    • 2011
  • In this paper, a low-power direct-conversion transmitter based on current-mode operation, which satisfies the IEEE 802.15.4 standard, is proposed and implemented in a $0.13{\mu}m$ CMOS technology. The proposed transmitter consists of DACs, LPFs, variable gain I/Q up-conversion mixer, a divide-by-two circuit with LO buffer, and a drive amplifier. By combining DAC, LPF, and variable gain I/Q up-conversion mixer with a simple current mirror configuration, the transmitter's power consumption is reduced and its linearity is improved. The drive amplifier is a cascode amplifier with gain controls and the 2.4GHz I/Q differential LO signals are generated by a divide-by-two current-mode-logic (CML) circuit with an external 4.8GHz input signal. The implemented transmitter has 30dB of gain control range, 0dBm of maximum transmit output power, 33dBc of local oscillator leakage, and 40dBc of the transmit third harmonic component. The transmitter dissipates 10.2mW from a 1.2V supply and the die area of the transmitter is $1.76mm{\times}1.26mm$.

A Novel Spiral Type MEMS Power Generator with Shear Mode Piezoelectric Thick Film (압전 후막의 전단 변형을 이용한 나선형 MEMS 발전기)

  • Song, Hyun-Cheol;Kim, Sang-Jong;Moon, Hi-Gyu;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.219-219
    • /
    • 2008
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for ubiquitous sensor networks (USN). There are several power generating methods such as thermal gradients, solar cell, energy produced by human action, mechanical vibration energy, and so on. Most of all, mechanical vibration is easily accessible and has no limitation of weather and environment of outdoor or indoor. In particular, the piezoelectric energy harvesting from ambient vibration sources has attracted attention because it has a relative high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system hassome drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure. In this case, the energy harvester has a lower natural frequency under 200 Hz than a normal cantilever structure. Moreover, it has higher an energy conversion efficient because shear mode ($d_{15}$) is much larger than 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate as a standalone power generator for USN.

  • PDF

Analysis of Distortion Characteristic of Amplitude Modulated Signal through a Current-Mode-Logic Frequency Divider (전류모드논리 주파수 분할기를 통한 기저대역 AM 변조 신호의 왜곡 특성 연구)

  • Kim, Hyeok;Park, Youngcheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.7
    • /
    • pp.620-624
    • /
    • 2016
  • In this paper we designed a current mode logic frequency divider to transmit a baseband amplitude modulated signal. From simulation result, we studied input and output waveforms according to the variation of input bias voltage. For the purpose of the verification of the study, we designed a current mode logic frequency divider at 1,400 MHz. The designed frequency divider operates between 100 MHz and 3,000 MHz, for -33 dBm input power. The circuit draws $I_{total}=30mA$ from $V_{DD}=3V$ supply, and the simulation result shows that an amplitude modulated signal at 1,400 MHz with the modulation index of 0.5 was successfully downconverted to 700 MHz.

A NOVEL SPIRAL TYPE MEMS POWER GENERATOR WITH SHEAR MODE

  • Song, Hyun-Cheol;Kang, Chong-Yun;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.7-7
    • /
    • 2010
  • Energy harvesting from the environment has been of great interest as a standalone power source of wireless sensor nodes for Ubiquitous Sensor Networks(USN). In particular, the piezoelectric energy harvesting from ambient vibration sources has intensively researched because it has a relatively high power density comparing with other energy scavenging methods. Through recent advances in low power consumption RF transmitters and sensors, it is possible to adopt a micro-power energy harvesting system realized by MEMS technology for the system-on-chip. However, the MEMS energy harvesting system has some drawbacks such as a high natural frequency over 300 Hz and a small power generation due to a small dimension. To overcome these limitations, we devised a novel power generator with a spiral spring structure as shown in the figure. The natural frequency of a cantilever could be decreased to the usable frequency region (under 300 Hz) because the natural frequency depends on the length of a cantilever. In this study, the natural frequency of the energy harvester was a lower than a normal cantilever structure and sufficiently controllable in 50 - 200 Hz frequency region as adjusting weight of a proof mass. Moreover, the MEMS energy harvester had a high energy conversion efficiency using a shear mode ($d_{15}$) is much larger than a 33 mode ($d_{33}$) and the energy conversion efficiency is proportional to the piezoelectric constant (d). We expect the spiral type MEMS power generator would be a good candidate for a standalone power generator for USN.

  • PDF

Performance of lightweight aggregate and self-compacted concrete-filled steel tube columns

  • AL-Eliwi, Baraa J.M.;Ekmekyapar, Talha;Faraj, Radhwan H.;Gogus, M. Tolga;AL-Shaar, Ahmed A.M.
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.299-314
    • /
    • 2017
  • The aim of this paper is to investigate the performance of Lightweight Aggregate Concrete Filled Steel Tube (LWCFST) columns experimentally and compare to the behavior of Self-Compacted Concrete Filled Steel Tube (SCCFST) columns under axial loading. Four different L/D ratios and three D/t ratios were used in the experimental program to delve into the compression behaviours. Compressive strength of the LWC and SCC are 33.47 MPa and 39.71 MPa, respectively. Compressive loading versus end shortening curves and the failure mode of sixteen specimens were compared and discussed. The design specification formulations of AIJ 2001, AISC 360-16, and EC4 were also assessed against test results to underline the performance of specification methods in predicting the compression capacity of LWCFST and SCCFST columns. Based on the behaviour of the SCCFST columns, LWCFST columns exhibited different performances, especially in ductility and failure mode. The nature of the utilized lightweight aggregate led to local buckling mode to be dominant in LWCFST columns, even the long LWCFST specimens suffered from this behaviour. While with the SCCFST specimens the global buckling governed the failure mode of long specimens without any loss in capacity. Considering a wide range of column geometries (short, medium and long columns), this paper extends the current knowledge in composite construction by examining the potential of two promising and innovative structural concrete types in CFST applications.

The Identification of Binding Mode for Arabidopsis thaliana 7-Keto-8-aminopelargonic Acid Synthase (AtKAPAS) Inhibitors

  • Cho, Jae-Eun;Kang, Sun-Young;Choi, Jung-Sup;Ko, Young-Kwan;Hwang, In-Taek;Kang, Nam-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1597-1602
    • /
    • 2012
  • In this study, we determined the 3D-structure of Arabidopsis thaliana KAPAS by homology modeling. We then investigated the binding mode of compounds obtained from in-house library using computational docking methods. From the flexible docking study, we achieved high dock scores for the active compounds denoted in this study as compound $\mathbf{3}$ and compound $\mathbf{4}$. Thus, we highlight the flexibility of specific residues, Lys 312 and Phe 172, when used in active sites.

Prediction of Acute Toxicity to Fathead Minnow by Local Model Based QSAR and Global QSAR Approaches

  • In, Young-Yong;Lee, Sung-Kwang;Kim, Pil-Je;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.613-619
    • /
    • 2012
  • We applied several machine learning methods for developing QSAR models for prediction of acute toxicity to fathead minnow. The multiple linear regression (MLR) and artificial neural network (ANN) method were applied to predict 96 h $LC_{50}$ (median lethal concentration) of 555 chemical compounds. Molecular descriptors based on 2D chemical structure were calculated by PreADMET program. The recursive partitioning (RP) model was used for grouping of mode of actions as reactive or narcosis, followed by MLR method of chemicals within the same mode of action. The MLR, ANN, and two RP-MLR models possessed correlation coefficients ($R^2$) as 0.553, 0.618, 0.632, and 0.605 on test set, respectively. The consensus model of ANN and two RP-MLR models was used as the best model on training set and showed good predictivity ($R^2$=0.663) on the test set.

Piezoelectric Properties on the Thickness of Specimens with PZT/Epoxy Composite Materials of 1-3 Connectivity (PZT/Epoxy (1-3형) 복합재료의 두께변화에 따른 압전특성)

  • 김용혁;김호기;김진수;이덕출
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.1
    • /
    • pp.7-14
    • /
    • 1988
  • In this paper, piezoelectric composite materials of 1-3 connectivity were prepared by using "dicing-filling" technique with PZT ceramics and epoxy polymers, and the dependence of piezoelectric properties on the thickness of specimens was investigated. In case that the PZT volume percent is 18.1%, according to an increment of thickness, the dielectric constant of composites( 33) is unchangeable, which is about 200, the piezoelectric coefficient (d33) is somewhat increased, which is about 240-280 (PC/N) and the electromechanical coupling factor of thickness mode(kt) is proportioned, but radial mode(kp) is constant.

  • PDF

Acoustic Target Strength of the Pelagic Fish in the Southern Waters of Korea I. In situ Measurement of Target Strength of Anchovy (Engraulis japonica) (한국 남해안 부어류의 음향반사강도에 관한 연구 I. 멸치 (Engraulis japonica)의 in situ 반사강도 측정)

  • YOON Gab Dong;KIM Zang Geun;CHOI Young Min
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.1
    • /
    • pp.107-114
    • /
    • 1996
  • The in situ target strength for the anchovy (Engraulis japonica) were measured by the split beam echo sounder system at 38 kHz. This study allowed us to detect the single echos from anchovy shoals which were dispersed during trawling operation in day time. The results of our study were as fellows: We found that the anchouy occupied about $95\%$ of the total catch from the detected shoals from which target strength data were collected. Length distribution of anchovy showed a mode and ranged from 13.6 to 15.4cm with a mean of 14.4cm and a standard deviation of 0.45cm, and weight distribution showed a mode and ranged from 16 to 28 g witha mean of 21.9 g and a standard deviation of 2.7 g. The target strength distribution of anchovy ranged from -40.7 dB to -69.2 dB in the water layer of ,$10\~30\;m$ -42.19 to -67.7 dB in the $30\~50\;m$ and -42.2 to -67.7 dB in $10\~50\;m$, showing 2 modes in each layer, respectively. Overall mean target strengths were -49.7 dB/fish and -33.1 dB/kg, averaged by area backscattering cross section $(\sigma)$, and the confidence interval for target strength was less than 1 dB. With the mean total length and the mean target strength, we drived the target strength-length relationship as $TS(\sigma)=20\;Log\;L-72.9$.

  • PDF