• Title/Summary/Keyword: $ZrO_2$ oxide

Search Result 363, Processing Time 0.029 seconds

Characterization by Solid-State $^51V$ NMRand X-ray Diffraction of Vanadium Oxide Supported on ZrO₂

  • 손종락;박만영;배영일
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.274-278
    • /
    • 1996
  • Vanadium oxide-zirconia catalysts were prepared by dry impregnation of powdered Zr(OH)4 with aqueous solution of NH4VO3. The characterization of prepared catalysts was performed using 51V solid state NMR, XRD, and DSC. The addition of vanadium oxide up to 9 mol% to zirconia shifted the phase transitions of ZrO2 from amorphous to tetragonal toward higher temperatures due to the interaction between vanadium oxide and zirconia. On the basis of results of XRD and DSC, it is concluded that the content of V2O5 monolayer covering most of the available zirconia was 9 mol%. The crystalline V2O5 was observed only with the samples containing V2O5 content exceeding the formation of complete monolayer (9 mol%) on the surface of ZrO2.

Characteristics of Al2O3/ZrO2 Ceramics by the Dispersion Process of ZrO2 Particles (ZrO2 입자의 분산방법에 따른 Al2O3/ZrO2 요업체의 특성)

  • Youn, Sang-Hum;Kim, Jae-Jun;Hwang, Kyu-Hong;Lee, Jong-Kook;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.561-566
    • /
    • 2005
  • For the homogeneous dispersion of $ZrO_2$ particles in $Al_2O_3/ZrO_2$ceramics, Zr-precusors were mixed with oxide $Al_2O_3$powders by chemical routes such as partial precipitation or partial polymerization of Zr-nitrate solutions. In case of the mechanical mixing of ultrafine $Al_2O_3$ and $ZrO_2$ oxide powders, relatively homogeneous dispersion was difficult to achieve so that the particle size and distributions of $ZrO_2$ were relatively inhomogeneous after sintering at high temperature. But when the Zr-Y-hydroxide were co-precipitated to ultrafine $Al_2O_3$ oxide powders followed by calcinations, homogeneous dispersion of nano-sized $ZrO_2$ particles in $Al_2O_3/ZrO_2$ composite ceramics were obtained. But because of the coalescence of dispersed $ZrO_2$ particles, dispersed $ZrO_2$ was grown up to more than 0.2${mu}m$ (200 nm) when sintered at the temperature of higher than $1500^{\circ}C$ But when the sintering temperature was kept to lower than $1400^{\circ}C$ by using nano-sized $\alpha-alumina$, the particle size of dispersed $ZrO_2$ could be sustained below 0.1 ${\mu}m$. But the coalescence of dispersed $ZrO_2$ between $Al_2O_3$ particles could not be avoided so that the mechanical properties were not enhanced contrary to the expectations. So Zr-polyester precursors were precipitated and coated to the surface of ultrafine $\alpha-alumina$ powders by the polymerization of Ethylene Glycol with Citric Acid and Zirconium Nitrate. By this dispersion much more uniform dispersion of $ZrO_2$ was achieved at $1450\~1600^{\circ}C$ of sintering temperature ranges. And due to especially discrete dispersion of $ZrO_2$ between $Al_2O_3$ particles, their mechanical strength was more enhanced than mechanical mixing or hydroxide precipitation methods.

Hydrogen Storage Characteristics Using Redox of $M/Fe_2O_3$ (M = Rh, Ce and Zr) Mixed Oxides ($M/Fe_2O_3$ (M = Rh, Ce 및 Zr) 혼합 산화물의 산화-환원을 이용한 수소 저장 특성)

  • Ryu, Jae-Chun;Lee, Dong-Hee;Kim, Young-Ho;Yang, Hyun-Soo;Park, Chu-Sik;Wang, Gab-Jin;Kim, Jong-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.21-30
    • /
    • 2006
  • [ $M/Fe_2O_3$ ] (M=Rh, Ce and Zr) mixed oxides were prepared using urea method to develop a medium for chemical hydrogen storage by their redox cycles. And their redox behaviors by repeated cycles were studied using temperature programmed reaction(TPR) technique. Additives such as Rh, Ce and Zr were added to iron oxides in order to lower the reaction temperature for reduction by hydrogen and re-oxidation by water-splitting. From the results, concentration of urea used as a precipitant had little effect on particle size and reduction property of iron oxide. TPR patterns of iron oxide consisted of two reduction peaks due to the course of $Fe_2O_3\;{\rightarrow}\;Fe_3O_4\;{\rightarrow}\;Fe$. The results of repeated redox tests showed that Rh added to iron oxide have an effect on lowering the re-oxidation temperature by water-splitting. Meanwhile, Ce and Zr additives played an important role in prevention of deactivation by repeated cycles. Finally, Fe-oxide(Rh, Ce, Zr) sample added with Rh, Ce and Zr showed the lowest re-oxidation temperature by water-splitting and maintained high $H_2$ recovery in spite of the repeated redox cycles. Consequently, it is expected that Fe-oxide(Rh, Ce, Zr) sample can be a feasible medium for chemical hydrogen storage using redox cycle of iron oxide.

Study on the Corrosion Characteristics in the Slag Line of SEN Oxide Refractory (산화물계 SEN내화물의 슬래그 라인부 침식특성 연구)

  • Sung, Young Taek;Son, Jeong Hun;Lee, Sung Seok;Bae, Dong Sik
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2014
  • The corrosion resistance of submerged entry nozzle (SEN) materials were investigated for high-class steel manufacturing. Composite samples were fabricated by mixing $ZrO_2$, $Al_2O_3$, MgO, mullite, spinel, and carbon. The raw materials were mixed with attrition milling, compacted in a uniaxial pressure of 200MPa and calcined at $1000^{\circ}C$ for 3 h in $N_2$ atmosphere. The bulk density and apparent porosity of the calcined samples were measured by the liquid displacement method in water using Archimedes's principle. The corrosion resistance of the samples were measured by cup test with mold powder at $1550^{\circ}C$ for 2 h. The microstructure and elemental analysis of samples were observed by scanning electron microscopy (SEM), energy dispersive spectrum (EDS), and X-ray diffraction pattern (XRD). The XRD result shows that the starting raw materials were crystalline phase. The microstructure of fabricated specimen was investigated before and after corrosion tests at $1000^{\circ}C$ and $1550^{\circ}C$ for 2h. $ZrO_2$-C composite showed good resistance in the slag corrosion test. Among the composite oxide materials, $ZrO_2-Al_2O_3$-C and $ZrO_2$-MgO-C showed better resistance than $ZrO_2$-C in the slag corrosion test. The diameter variation index of $ZrO_2$-C refractory was 16.1 at $1000^{\circ}C$ for 2 h. The diameter variation index of the $ZrO_2-Al_2O_3$-C refractory was larger than that of the $ZrO_2$-C refractory at $1550^{\circ}C$ for 2 h.

Effect of Al2O3-ZrO2 Composite Oxide Thickness on Electrical Properties of Etched Al Foil

  • Chen, Fei;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.160-165
    • /
    • 2016
  • To increase the capacitance of an Al electrolytic capacitor, the anodic oxide film, $Al_2O_3$, was partly replaced by an $Al_2O_3-ZrO_2$ (Al-Zr) composite film prepared by the vacuum infiltration method and anodization. The microstructure and composition of the prepared samples were investigated by scanning electron microscopy and transmission electron microscopy. The coated and anodized samples showed multi-layer structures, which consisted of an inner Al hydrate layer, a middle Al-Zr composite layer, and an outer $Al_2O_3$ layer. The thickness of the coating layer could go up to 220 nm when the etched Al foil was coated 8 times. The electrical properties of the samples, such as specific capacitance, leakage current, and withstanding voltages, were also characterized after anodization at 100 V and 600 V. The capacitances of samples with $ZrO_2$ coating were 36.3% and 27.5% higher than those of samples without $ZrO_2$ coating when anodized at 100 V and 600 V, respectively.

Reaction Bonding of $ZrO_2$ and NiTi : Reaction Products Analyses on $ZrO_2/NiTi$ Bonding Interface with AEM ($ZrO_2$와 NiTi 합금의 반응접합 : 분석투과전자현미경을 이용한 $ZrO_2/NiTi$ 접합층 반응생성물 분석)

  • Kim, Young-Jung;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.949-954
    • /
    • 1993
  • Microstructural development at the ZrO2/NiTi bonding interface and reaction products were examined and identified with SEM and AEM. Ti-oxide, Ti2Ni and Ni2Ti layer were observed whose thickness depends on bonding temperature typically. The development of Ti-oxide layer is related with oxygen ion in ZrO2 and liquid phase Ti2Ni. It is considered that compositional deviation from homogeneity and residual stress caused by thermal expansion mismatch are closely related with the formation of the Ti2Ni phase.

  • PDF

Interfacial properties of ZrO$_2$ on silicon

  • Lin, Y.S.;Puthenkovilakam, R.;Chang, J.P.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.65.1-65
    • /
    • 2003
  • The interface of zirconium oxide thin films on silicon is analyzed in detail for their potential applications in the microelectronics. The formation of an interfacial layer of ZrSi$\sub$x/O$\sub$y. with graded Zr concentration is observed by the x-ray photoelectron spectroscopy and secondary ion mass spectrometry analysis. The as-deposited ZrO$_2$/ZrSi$\sub$x/O$\sub$y//Si sample is thermally stable up to 880$^{\circ}C$, but is less stable compared to the ZrO$_2$/SiO$_2$/Si samples. Post-deposition annealing in oxygen or ammonia improved the thermal stability of as-deposited ZrO$_2$/ZrSi$\sub$x/O$\sub$y/Si to 925$^{\circ}C$, likely due to the oxidation/nitridation of the interface. The as-deposited film had an equivalent oxide thickness of∼13 nm with a dielectric constant of ∼21 and a leakage current of 3.2${\times}$10e-3 A/$\textrm{cm}^2$ at 1.5V. Upon oxygen or ammonia annealing, the formation of SiO$\sub$x/ and SiH$\sub$x/N$\sub$y/O$\sub$z/ at the interface reduced the overall dielectric constants.

  • PDF

Zr-Nb 합금의 산과거동 및 Oxide 분석

  • 주기남;권상철;김성수;안상복;김영석
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.99-104
    • /
    • 1998
  • 40$0^{\circ}C$ $H_2O$ steam 분위기에서 Zr-2,5wt%Nb 및 Zr-20wt%Nb 합금의 산화거동을 열처리조건에 따른 미세조직 관점에서 고찰하였으며, 형성된 oxide를 분석하여 산화기구를 규명하고자 하였다. Zr-Nb 합금의 산화거동은 열처리에 따라 협성된 조직상에 매우 민감하였는데, 주 조직인 a-Zr 상 보다는 $\beta$상들에 ($\beta$-Zr, $\beta$-Nb) 보다 큰 영향을 받는 것으로 보인다. $\beta$-Zr 상은 $\alpha$-Zr 상에 비해 부식저항성이 낮으며, 그 양에 관계없이 유사한 정도의 부식거동을 보인다. $\beta$-Nb 상의 경우, 미세한 크기로 적은양이 존재하는 경우 부식저항성에 별다른 영향이 없어 보이는 반면, 상당량의 $\beta$-Nb 상이 조대한 크기로 (약 0,2$\mu\textrm{m}$) 존재하는 경우 매우 불안정한 부식거동을 보였다. 이들 $\beta$상들의 낮은 산화저항성은 Nb$_2$O$_{5}$ 을 포함한 Nb 계 oxide의 형성에 주로 기인한 것으로 추정된다.

  • PDF

Stacked High Voltage Al Electrolytic Capacitors Using Zr-Al-O Composite Oxide

  • Zhang, Kaiqiang;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.757-763
    • /
    • 2019
  • A stacked high-voltage (900 V) Al electrolytic capacitor made with ZrO2 coated anode foils, which has not been studied so far, is realized and the effects of Zr-Al-O composite layer on the electric properties are discussed. Etched Al foils coated with ZrO2 sol are anodized in 2-methyl-1,3-propanediol (MPD)-boric acid electrolyte. The anodized Al foils are assembled with stacked structure to prepare the capacitor. The capacitance and dissipation factor of the capacitor with ZrO2 coated anode foils increase by 41 % and decrease by 50 %, respectively, in comparison with those of Al anode foils. Zr-Al-O composite dielectric layer is formed between separate crystalline ZrO2 with high dielectric constant and amorphous Al2O3 with high ionic resistivity. This work suggests that the formation of a composite layer by coating valve metal oxide on etched Al foil surface and anodizing it in MPD-boric acid electrolyte is a promising approach for high voltage and volume efficiency of capacitors.