Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.12.757

Stacked High Voltage Al Electrolytic Capacitors Using Zr-Al-O Composite Oxide  

Zhang, Kaiqiang (Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University)
Park, Sang-Shik (School of Nano Materials Engineering, Kyungpook National University)
Publication Information
Korean Journal of Materials Research / v.29, no.12, 2019 , pp. 757-763 More about this Journal
Abstract
A stacked high-voltage (900 V) Al electrolytic capacitor made with ZrO2 coated anode foils, which has not been studied so far, is realized and the effects of Zr-Al-O composite layer on the electric properties are discussed. Etched Al foils coated with ZrO2 sol are anodized in 2-methyl-1,3-propanediol (MPD)-boric acid electrolyte. The anodized Al foils are assembled with stacked structure to prepare the capacitor. The capacitance and dissipation factor of the capacitor with ZrO2 coated anode foils increase by 41 % and decrease by 50 %, respectively, in comparison with those of Al anode foils. Zr-Al-O composite dielectric layer is formed between separate crystalline ZrO2 with high dielectric constant and amorphous Al2O3 with high ionic resistivity. This work suggests that the formation of a composite layer by coating valve metal oxide on etched Al foil surface and anodizing it in MPD-boric acid electrolyte is a promising approach for high voltage and volume efficiency of capacitors.
Keywords
$ZrO_2$; anodization; composite layer; stacked structure; high-voltage capacitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Ban, Y. He, S. Xin and J. Du, Trans. Nonferrous Met. Soc. China, 23, 1039 (2013).   DOI
2 F. Chen and S. S. Park, ECS J. Solid State Sci. Technol., 4, 293 (2015).   DOI
3 J. K. Chang, C. M. Liao, C. H. Chen and W. T. Tsai, J. Power Sources, 138, 301 (2004).   DOI
4 J. Ren and Y. Zuo, Appl. Surf. Sci., 261, 193 (2012).   DOI
5 S. Stojadinovic, I. Belca, M. Tadic, B. Kasalica, Z. Nedic and L. Zekovic, J. Electroanal. Chem., 619, 125 (2008).   DOI
6 T. Kudo and R. S. Alwitt, Electrochim. Acta, 23, 341 (1978).   DOI
7 L. Xiang and S. S. Park, Appl. Surf. Sci., 388, 245 (2016).   DOI
8 S. S. Park and B. T. Lee, J. Electroceramics, 13, 111 (2004).   DOI
9 S. Koyama, Y. Aoki, S. Nagata and H. Jabazali, J. Solid State Electrochem., 15, 2221 (2011).   DOI
10 Z. S. Feng, J. J. Chen, R. Zhang and N. Zhao, Ceram. Int., 38, 3057 (2012).   DOI
11 K. Kukli, M. Ritala, T. Uustare, J. Aarik, K. Forsgren, T. Sajavaara, M. Leskela and A. Harsta, Thin Solid Films, 410, 53 (2002).   DOI
12 K. Zhang and S. S. Park, Surf. Coat. Technol., 310, 143 (2017).   DOI
13 K. Zhang and S. S. Park, Appl. Surf. Sci., 477, 44 (2019).   DOI
14 T. Kudo and R. S. Alwitt, Electrochim. Acta, 23, 341 (1978).   DOI
15 K. Watanabe, M. Sakairi, H. Takahashi, S. Hirai and S. Yamaguchi, J. Electroanal. Chem., 473, 250 (1999).   DOI
16 D. A. Jerebtsov, G. G. Mikhailov and S. V. Sverdina, Ceram. Int., 26,821 (2000).   DOI
17 P. Doerner, L. J. Gauckler, H. Krieg, H. L. Lukas. G. Petzow and J. Weiss, CALPHAD, 3, 241 (1979).   DOI
18 L. Xiang and S. S. Park, Thin Solid Films, 623, 19 (2017).   DOI
19 X. Du and Y. Xu, Thin Solid Films, 516, 8436 (2008).   DOI
20 G. Takano, M. Shimizu, K. Nakaaki, M. Weaver and M. Kudo, Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting, 4, 2555 (2004).
21 N Derrick and J Zeigler, US patent 3,806,769 (1974).