• Title/Summary/Keyword: $ZnIn_2S_4$

Search Result 1,093, Processing Time 0.032 seconds

Study on point defect for $ZnIn_2S_4$ epilayers grown by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의해 성장된 $ZnIn_2S_4$ 에피레이어의 점결함 연구)

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.141-142
    • /
    • 2008
  • Single crystal $ZnIn_2S_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $ZnIn_2S_4$ source at $610^{\circ}C$. The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 2.9514eV - ($7.24\times10^{-4}$ eV/K)$T^2$/(T + 489 K). After the as-grown $ZnIn_2S_4$ single crystal thin films was annealed in Zn-, S-, and In-atmospheres, the origin of point defects of $ZnIn_2S_4$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{Zn}$, $V_s$, $Zn_{int}$, and $S_{int}$, obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $ZnIn_2S_4$ single crystal thin films to an optical p-type. Also, we confirmed that In in $ZnIn_2S_4$/GaAs did not form the native defects because In in $ZnIn_2S_4$ single crystal thin films existed in the form of stable bonds.

  • PDF

Growth and Effect of Thermal Annealing for ZnIn2S4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 열처리 효과)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.318-325
    • /
    • 2008
  • Single crystal $ZnIn_2S_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T^2/(T+489\;K)$. After the as-grown $ZnIn_2S_4$ single crystal thin films were annealed in Zn-, S-, and In-atmospheres, the origin of point defects of $ZnIn_2S_4$ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $ZnIn_2S_4$ single crystal thin films to an optical p-type. Also, we confirmed that In in $ZnIn_2S_4$/GaAs did not form the native defects because In in $ZnIn_2S_4$ single crystal thin films existed in the form of stable bonds.

Thermal diffusion properties of Zn, Cd, S, and B at the interface of CuInGaSe2 solar cells

  • Yoon, Young-Gui;Choi, In-Hwan
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.52-58
    • /
    • 2013
  • Two different window-structured $CuInGaSe_2$(CIGS) solar cells, i.e., CIGS/thin-CdS/ZnO:B(sample A) and CIGS/very thin-CdS/Zn(S/O)/ZnO:B(sample B), were prepared, and the diffusivity of Zn, Cd, S, and B atoms, respectively, in the CIGS, ZnO or Zn(S/O) layer was estimated by a theoretical fit to experimental secondary ion mass spectrometer data. Diffusivities of Zn, Cd, S, and B atoms in CIGS were $2.0{\times}10^{-13}(1.5{\times}10^{-13})$, $4.6{\times}10^{-13}(4.4{\times}10^{-13})$, $1.6{\times}10^{-13}(1.8{\times}10^{-13})$, and $1.2{\times}10^{-12}cm^2/s$ at 423K, respectively, where the values in parentheses were obtained from sample B and the others from sample A. The diffusivity of the B atom in a Zn(S/O) of sample B was $2.1{\times}10^{-14}cm^2/sec$. Moreover, the diffusivities of Cd and S atoms diffusing back into ZnO(sample A) or Zn(S/O)(sample A) layers were extremely low at 423K, and the estimated diffusion coefficients were $2.2{\times}10^{-15}cm^2/s$ for Cd and $3.0{\times}10^{-15}cm^2/s$ for S.

Photoluminescence of ZnGa2O4-xMx:Mn2+ (M=S, Se) Thin Films

  • Yi, Soung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.6
    • /
    • pp.13-16
    • /
    • 2003
  • Mn-doped $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin film phosphors have been grown using a pulsed laser deposition technique under various growth conditions. The structural characterization carr~ed out on a series of $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) films grown on MgO(l00) substrates usmg Zn-rich ceramic targets. Oxygen pressure was varied from 50 to 200 mTorr and Zn/Ga ratio was the function of oxygen pressure. XRD patterns showed that the lattice constants of the $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin film decrease with the substitution of sulfur and selenium for the oxygen in the $ZnGa_2O_4$. Measurements of photoluminescence (PL) properties of $ZnGa_{2}O_{4}$:$Mn^{2+}$ (M=S, Se) thin films have indicated that MgO(100) is one of the most promised substrates for the growth of high quality $ZnGa_2O_{4-x}M_{x}$:$Mn^{2+}$ (M=S, Se) thin films. In particular, the incorporation of Sulfur or Selenium into $ZnGa_2O_4$ lattice could induce a remarkable increase in the intensity of PL. The increasing of green emission intensity was observed with $ZnGa_2O_{3.925}Se_{0.075}:$Mn^{2+}$ and $ZnGa_2O_{3.925}S_{0.05}$:$Mn^{2+}$ films, whose brightness was increased by a factor of 3.1 and 1.4 in comparison with that of $ZnGa_{2}O_{4}$:$Mn^{2+}$ films, respectively. These phosphors may promise for application to the flat panel displays.

Photoluminescence of Multinary-compound Semiconductor $ZnGaInS_4:Er^{3+}$ Single Crystals (다원화합물 반도체 $ZnGaInS_4:Er^{3+}$ 단결정의 광발광 특성)

  • Kim, Nam-Oh;Kim, Hyung-Gon;Bang, Tae-Hwan;Hyun, Seung-Cheol;Kim, Duck-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.35-39
    • /
    • 2000
  • $ZnIn_2S_4$ and $ZnGaInS_4:Er^{3+}$ single crystals crystallized in the rhombohedral (hexagonal) space group $C_{3v}^5(R3m)$, with lattice constants $a=3.852{\AA},\;c=37.215{\AA}$ for $ZnIn_2S_4$, and $a=3.823{\AA}$, and $c=35.975{\AA}$ for $ZnIn_2S_4:Er^{3+}$. The optical absorption measured near the fundamental band edge showed that the optical energy band structure of there compounds had a direct and indirect band gap, the direct and indirect energy gaps are found to be 2.778 and 2.682 eV for $ZnIn_2S_4$, and 2.725 and 2.651eV for $ZnIn_2S_4:Er^{3+}$ at 293 K. The photoluminescence spectra of $ZnIn_2S_4:Er^{3+}$ measured in the wavelength ranges of $500nm{\sim}900nm$ at 10 K. Eight sharp emission peaks due to $Er^{3+}$ ion are observed in the regions of $549.5{\sim}550.0nm,\;661.3{\sim}676.5nm$, and $811.1{\sim}834.1nm$, and $1528.2{\sim}1556.0nm$ in $CdGaInS_4:Er^{3+}$ single crystal. These PL peaks were attributed to the radiative transitions between the split electron energy levels of the $Er^{3+}$ ions occupied at $C_{2v}$, symmetry of the $ZnIn_2S_4$ single crystals host lattice.

  • PDF

Growth and characterization of ZnIn$_2$S$_4$ single crystal thin film using Hot Wall Epitaxy method (Hot Wall Epitaxy (W)에 의한 ZnIn$_2$S$_4$ 단결정 박막 성장과 특성)

  • 윤석진;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.266-272
    • /
    • 2002
  • The stochiometric mixture of evaporating materials for the ZnIn$_2$S$_4$ single crystal thin film was prepared from horizontal furnace. To obtain the ZnIn$_2$S$_4$ single crystal thin film, ZnIn$_2$S$_4$ mixed crystal was deposited on throughly etched semi-insulating GaAs(100) in the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 610 $^{\circ}C$ and 450 $^{\circ}C$, respectively and the growth rate of the ZnIn$_2$S$_4$ single crystal thin film was about 0.5 $\mu\textrm{m}$/hr. The crystalline structure of ZnIn$_2$S$_4$ single crystal thin film was investigated by photo1uminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of ZnIn$_2$S$_4$ single crystal thin film measured from Hall effect by van der Pauw method are 8.51${\times}$10$\^$17/ cm$\^$-3/, 291 $\textrm{cm}^2$/V$.$s at 293 $^{\circ}$K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the ZnIn$_2$S$_4$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 0.0148 eV and 0.1678 eV at 10 $^{\circ}$K, respectively. From the photoluminescence measurement of ZnIn$_2$S$_4$ single crystal thin film, we observed free excition (E$\_$X/) typically observed only in high quality crystal and neutral donor bound exciton (D$^{\circ}$,X) having very strong peak intensity. The full width at half maximum and binding energy of neutral donor bound excition were 9 meV and 26 meV, respectively. The activation energy of impurity measured by Haynes rule was 130 meV.

  • PDF

Removal of ZnO Nanoparticles in Aqueous Phase and Its Ecotoxicity Reduction (수계 내 ZnO 나노입자의 제거 및 생태독성 저감)

  • Kim, Hyunsang;Kim, Younghun;Kim, Younghee;Lee, Sangku
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.89-95
    • /
    • 2016
  • The nanotoxicity of ZnO nanoparticles used in cosmetics and tire industry is one of emerged issues. Herein, the removal of ZnO nanoparticles dispersed in aqueous phase and its ecotoxicity were investigated. In the short-term exposure for fertilized eggs (O. latipes), the deformity was observed at 5 mg L−1 of ZnO nanoparticles in some individuals and delayed hatching of eggs by retarded growth was observed at 10 mg L−1 of ZnO nanoparticles. This result show that ZnO nanoparticles have cytotoxic effect to the organisms lived in water phase. Therefore, herein, the removal of ZnO nanoparticles in aqueous phase by chemical precipitation was investigated. After addition of Na2S and Na2HPO4, the precipitated ZnO was transformed to ZnS and Zn3(PO4)2 particles, respectively. The removal efficiency of ZnO was reached to almost 100% for two cases. In addition, the toxicity tests about ZnS and Zn3(PO4)2 particles showed no acute toxicity for D. magna. This implies that transformation of ZnO to ZnS and Zn3(PO4)2 particles with very low ionization constant might decrease effectively the toxicity of ZnO.

Electrical properties for $ZnIn_2S_4$ epilayers grown by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의해 성장된 $ZnIn_2S_4$ 에피레이어의 전기적 특성)

  • Lee, Sang-Youl;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.143-144
    • /
    • 2008
  • Single crystal $ZnIn_2S_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $ZnIn_2S_4$ at $610^{\circ}C$ prepared from horizontal electric furnace. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $ZnIn_2S_4$ thin films measured with Hall effect by van der Pauw method are $8.51\times10^{17}$ electron/$cm^{-3}$, 291 $cm^2$/v-s at 293 K, respectively.

  • PDF

Growth and photocurrent study on the splitting of the valence band for ZnIn2S4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.419-427
    • /
    • 2007
  • Single crystal $ZnIn_{2}S_{4}$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the polycrystal source of $ZnIn_{2}S_{4}$ at $610^{\circ}C$ prepared from horizontal electric furnace. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $ZnIn_{2}S_{4}$ thin films measured with Hall effect by van der Pauw method are $8.51{\times}10^{17}\;electron/cm^{-3}$, $291{\;}cm^{2}/v-s$ at 293 K, respectively. The photocurrent and the absorption spectra of $ZnIn_{2}S_{4}$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $ZnIn_{2}S_{4}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.9514 eV. ($7.24{\times}10^{-4}\;eV/K$)$T^{2}$/(T+489 K). Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $ZnIn_{2}S_{4}$ have been estimated to be 167.8 meV and 14.8 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}$-, $B_{1}$-, and $C_{41}$-exciton peaks.

Opto-electric Properties of $ZnIn_2S_4$ single crystal thin film Grown by Hot Wall Epitaxy method (Hot Wall Epitaxy (HWE)에 의한 성장된 $ZnIn_2S_4$ 단결정 박막의 광전류 특성)

  • Hong, Kwang-Joon;Lee, Sang-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.71-72
    • /
    • 2006
  • The stochiometric mixture of evaporating materials for the $ZnIn_2S_4$ single crystal thin film was prepared from horizontal furnace. To obtain the $ZnIn_2S_4$ single crystal thin film. $ZnIn_2S_4$ mixed crystal was deposited on throughly etched semi-insulating GaAs(100). In the Hot Wall Epitaxy(HWE) system. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $ZnIn_2S_4$ single crystal thin film, we have found that the values of spin orbit splitting ${\Delta}So$ and the crystal field splitting ${\Delta}Cr$ were 0.0148 eV and 0.1678 eV at $10_{\circ}K$, respectively.

  • PDF