• 제목/요약/키워드: $Y_2O_3$ nanoparticle

검색결과 210건 처리시간 0.025초

Si 나노입자에서 shell이 전기화학적 특성에 미치는 영향 (Influence of Shell on the Electrochemical Properties of Si Nanoparticle)

  • 이정은;구정분;장보윤;김성수
    • 한국전기전자재료학회논문지
    • /
    • 제29권4호
    • /
    • pp.255-262
    • /
    • 2016
  • Effects of $SiO_x$ or C shells on electrochemical properties of Si nanoparticles were investigated. $SiO_x$ shells with thickness of 10~15 nm were formed on homogeneously crystalline Si nanoparticles. Incase of Si-C nanoparticles, there were 30~40 layers of C with a number of defects. Li-ion batteries were fabricated with the above-mentioned nanoparticles, and their electrochemical properties were measured. Pristine Si shows a high IRC (initial reversible capacity) of 2,517 mAh/g and ICE (initial columbic efficiency) of 87%, but low capacity retention of 22%, respectively. $SiO_x$ shells decreased IRC (1,534 mAh/g) and ICE (54%), while the retention increased up to 65%, which can be explained by irreversible phases such as $LiO_2$ and $Li_2SiO_3$. C shells exhibited no differences in IRC and ICE compared to the pristine Si but an enhanced retention of 54%, which might be from proper defect structures.

새로운 방식에 외해 제작된 $TiO_2$ 박막의 나노입자크기(IV) (Nanoparticle Size of $TiO_2$ Thin-Films Fabricated by Novel Method(IV))

  • 문정오;정재훈;김강언;문병기;손세모;정수태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.760-763
    • /
    • 2002
  • Nanoparticle size of Titanium dioxide thin films was prepared by novel method. Particle size and surface structure of $TiO_2$ thin films were investigated by atomic force microscopy(AFM), scanning electron microscopy(SEM). All thin films process were prepared at room temperature. Particle size was reduced from 100 to 30nm with increasing amount of $Ti[OCH(CH_3)_2]_4$ observed by AFM images. All thin films were irradiated for 5 minutes by white light. Increasing the annealing temperature, particles size was increased. In the $TiO_2$(40%) thin films was annealed at $300^{\circ}C$ for 30minutes, the particle size was about 10nm.

  • PDF

초미세 나노분말 γ-Fe2O3의 초상자성 특성연구 (Superparamagnetic Properties of γ-Fe2O3 Nanoparticles)

  • 이승화;이재광;채광표;안성용
    • 한국자기학회지
    • /
    • 제20권5호
    • /
    • pp.196-200
    • /
    • 2010
  • Sol-gel 법을 이용하여 초상자성 나노 입자 $\gamma-Fe_2O_3$를 제조하였다. 입자의 크기 및 자기적 성질을 x-선 회절법(XRD), Mossbauer 분광법, 진동시료 자화율 측정기(VSM)를 이용하여 연구하였다. x-선 회절 실험결과 150 이상에서 열처리한 입자는 순수한 cubic spinel 구조를 가지며, $150^{\circ}C$에서 열처리한 $\gamma-Fe_2O_3$의 평균입자 크기는 7 nm로다. Mossbauer 분광실험으로 $150^{\circ}C$에서 열처리한 입자는 상온에서 초상자성의 특성을 가지고 있음을 알 수 있었으며 초상자성의 특성을 잃어버리는 차단온도 $T_B$$183^{\circ}C$로 결정하였으며, 또한 자기이방성상수 K = $1.6{\times}10^6erg/cm^3$의 값을 얻었다. $150^{\circ}C$에서 열처리한 $\gamma-Fe_2O_3$의 VSM 측정 결과로부터 $150^{\circ}C$에서 열처리한 $\gamma-Fe_2O_3$의 경우 상온에서 초상자성의 특성을 확인 할 수 있었다.

Comparison of Luminescence Properties of Electrochemical Luminescence Cells for Various Electrode Materials and Structures

  • Pooyodying, Pattarapon;Ok, Jung-Woo;Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1605-1610
    • /
    • 2017
  • The electrochemical luminescence (ECL) device was investigated, which has similar structure to the dye-sensitized solar cell. The structure of the ECL cell in this experiment reliably induces a large amount of the oxidation around electrodes. The band gap of the ECL electrode is of 3.0 - 3.2 eV. Titanium dioxide ($TiO_2$) nanoparticle has following properties: a band gap of 3.4 eV, a low-priced material, and 002 preferred orientation (Z-axis). Zinc Oxide (ZnO) nanorod is easy to grow in a vertical direction. In this paper, in order to determine material suitable for the ECL device, the properties of various materials for electrodes of ECL devices such as ZnO nanorod (ZnO-NR) and $TiO_2$ nanoparticle ($TiO_2-NP$) were compared. The threshold voltage of the light emission of the ZnO-NR was 2.0 V which is lower than 2.5 V of $TiO_2-NP$. In the other hand, the luminance of $TiO_2-NP$ was $44.66cd/m^2$ and was higher than that of $34cd/m^2$ of ZnO-NR at the same applied voltage of 4 V. Based on the experimental results, we could conclude that $TiO_2-NP$ is a more suitable electrode material in ECL device than the ZnO-NR.

The Distance-Dependent Fluorescence Enhancement Phenomena in Uniform Size Ag@SiO2@SiO2(dye) Nanocomposites

  • Arifin, Eric;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.539-544
    • /
    • 2013
  • $Ag@SiO_2@SiO_2$(FITC) nanocomposites were prepared by the simple polyol process and St$\ddot{o}$ber method. Fluorescence enhancement of fluorescein moiety (fluorescein isothiocyanate, FITC) was investigated in the presence of silver nanoparticles in $Ag@SiO_2@SiO_2$(FITC) system with varying thickness (X nm) of first silica shell. Maximum enhancement factor of 4.3 fold was achieved in $Ag@SiO_2@SiO_2$(FITC) structure with the first silica shell thickness of 8 nm and the average separation distance of 11 nm between the surface of silver nanoparticle and fluorescein moiety. The enhancement is believed to be originated from increased excitation rate of fluorescein moiety due to concentrated local electromagnetic field which was improved by interaction of light with silver nanoparticles.

염료감응형 태양전지의 저비용 상대전극을 위한 N-doped ZnO 나노입자-탄소나노섬유 복합체 (N-Doped ZnO Nanoparticle-Carbon Nanofiber Composites for Use as Low-Cost Counter Electrode in Dye-Sensitized Solar Cells)

  • 안하림;안효진
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.565-571
    • /
    • 2014
  • Nitrogen-doped ZnO nanoparticle-carbon nanofiber composites were prepared using electrospinning. As the relative amounts of N-doped ZnO nanoparticles in the composites were controlled to levels of 3.4, 9.6, and 13.8 wt%, the morphological, structural, and chemical properties of the composites were characterized by means of field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, the carbon nanofiber composites containing 13.8 wt% N-doped ZnO nanoparticles exhibited superior catalytic properties, making them suitable for use as counter electrodes in dye-sensitized solar cells (DSSCs). This result can be attributed to the enhanced surface roughness of the composites, which offers sites for $I_3{^-}$ ion reductions and the formation of Zn3N2 phases that facilitate electron transfer. Therefore, DSSCs fabricated with 13.8 wt% N-doped ZnO nanoparticle-carbon nanofiber composites showed high current density ($16.3mA/cm^2$), high fill factor (57.8%), and excellent power-conversion efficiency (6.69%); at the same time, these DSSCs displayed power-conversion efficiency almost identical to that of DSSCs fabricated with a pure Pt counter electrode (6.57%).

나노유체의 풀비등 임계열유속에 대한 실험적 연구 (Experimental Investigations on Pool Boiling CHE of Nano-Fluids)

  • 김형대;김무환
    • 대한기계학회논문집B
    • /
    • 제31권11호
    • /
    • pp.949-956
    • /
    • 2007
  • Pool boiling critical heat flux (CHF) of nanofluids with oxide nanoparticles of $TiO_2$ or $Al_2O_3$ was experimentally investigated under atmospheric pressure. The results showed that a dispersion of oxide nanoparticles significantly enhances the CHF over that of pure water. Moreover it was found that nanoparticles were seriously deposited on the heater surface during pool boiling of nanofluids. CHF of pure water on a nanoparticle-deposited surface, which is produced during the boiling of nanofluids, was not less than that of nanofluids. The result reveals that the CHF enhancement of nanofluids is absolutely attributed to modification of the heater surface by the nanoparticle deposition. Then, the nanoparticle-deposited surface was characterized with parameters closely related to pool boiling CHF, such as surface roughness, contact angle, and capillary wicking. Finally, reason of the CHF enhancement of nanofluids is discussed based on the changes of the parameters.

Electrochemical Characteristics of Indium Tin Oxide Nanoparticles prepared by Sol-gel Combustion Hybrid Method

  • Chaoumead, Accarat;Choi, Woo-Jin;Lee, Dong-Hoon;Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.414-417
    • /
    • 2011
  • Indium tin oxide (In:$SnO_2$) nanoparticles were synthesized employing a sol-gel combustion method followed by annealing. The TG, XRD, XPS and SEM results of the precursor powders and calcinated In:$SnO_2$ nanoparticles were investigated. Crystal structures were examined by powder XRD, and those results show shaper intensity peak at $25.6^{\circ}$ ($2{\theta}$) of $SnO_2$ by increased annealing temperature. A particle morphology and size was examined by SEM, and the size of the nanoparticles was found to be in the range of 20~30nm. In:$SnO_2$ films could controlled by nanoparticle material at various annealing temperature. The sol-gel combustion method was offered simple and effective route for the synthesis of In:$SnO_2$ nanoparticles.