Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.4.255

Influence of Shell on the Electrochemical Properties of Si Nanoparticle  

Lee, Jeong-eun (Korea Institute of Energy Research)
Koo, Jeong-boon (Korea Institute of Energy Research)
Jang, Bo-yun (Korea Institute of Energy Research)
Kim, Sung-Soo (Graduate School of Energy Science and Technology, Chungnam National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.4, 2016 , pp. 255-262 More about this Journal
Abstract
Effects of $SiO_x$ or C shells on electrochemical properties of Si nanoparticles were investigated. $SiO_x$ shells with thickness of 10~15 nm were formed on homogeneously crystalline Si nanoparticles. Incase of Si-C nanoparticles, there were 30~40 layers of C with a number of defects. Li-ion batteries were fabricated with the above-mentioned nanoparticles, and their electrochemical properties were measured. Pristine Si shows a high IRC (initial reversible capacity) of 2,517 mAh/g and ICE (initial columbic efficiency) of 87%, but low capacity retention of 22%, respectively. $SiO_x$ shells decreased IRC (1,534 mAh/g) and ICE (54%), while the retention increased up to 65%, which can be explained by irreversible phases such as $LiO_2$ and $Li_2SiO_3$. C shells exhibited no differences in IRC and ICE compared to the pristine Si but an enhanced retention of 54%, which might be from proper defect structures.
Keywords
Si nanoparticle; $Si-SiO_x$ nanoparticle; Si-C nanoparticle; Electrochemical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. F. Cui, L. Hu, J. W. Choi, and Y. Cui, ACS Nano., 47, 3671 (2010). [DOI: http://dx.doi.org/10.1021/nn100619m]   DOI
2 C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn, Chem. Soc., 39, 3115 (2010). [DOI: http://dx.doi.org/10.1039/b919877f]   DOI
3 H. Kim and Y. K. Sun, Materials Today., 17, 285 (2014). [DOI: http://dx.doi.org/10.1016/j.mattod.2014.05.003]   DOI
4 X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, ACS Nano., 6, 1522 (2012). [DOI: http://dx.doi.org/10.1021/nn204476h]   DOI
5 P. G. Bruce, B. Scrosati, and J. M. Tarascon, Angew. Chem. Int. Ed., 47, 2930 (2008). [DOI: http://dx.doi.org/10.1002/anie.200702505]   DOI
6 H. Kim, M. Seo, M. H. Park, and J. Cho, Angew. Chem. Int. Ed., 49, 2146 (2010). [DOI: http://dx.doi.org/10.1002/anie.200906287]   DOI
7 X. Zhao, C. M. Hayner, M. C. Kung, and H. H. Kung, Adv. Energy Mater., 1, 1079 (2011). [DOI: http://dx.doi.org/10.1002/aenm.201100426]   DOI
8 Q. Si, M. Matsu, T. Horiba, O. Yamamoto, Y. Takeda, N. Seki, and N. Imanishi, J. Power Sources., 241, 744 (2013).[DOI: http://dx.doi.org/10.1016/j.jpowsour.2013.05.090]   DOI
9 T. Moriga, K. Watanabe, D. Tsuji, S. Massaki, and I. Nakabayashi, J. Solid State Chem., 153, 386 (2000). [DOI: http://dx.doi.org/10.1006/jssc.2000.8787]   DOI
10 K. Homma, M. Kambara, and T. Yoshida, Sci. Technol. Adv. Mater., 15, 1 (2014). [DOI: http://dx.doi.org/10.1088/1468-6996/15/2/025006]   DOI
11 B. Y. Jang, J. S. Lee, C. H. Ko, J. Korean Phys. Soc., 57, 1029 (2014).
12 J. Yang, Y. Takeda, N. Lmanish, C. Capiglia, and J. Y. Xie, Solid State Ionics., 152, 125 (2002). [DOI: http://dx.doi.org/10.1016/S0167-2738(02)00362-4]   DOI
13 M. N. Obrovac and L. Christensen, Electrochem and Solid-State Lett., 7, A93 (2004). [DOI: http://dx.doi.org/10.1149/1.1652421]   DOI
14 B. A. Boukamp, G. C. Lesh, and R. A. Huggins, J. EIectrochem. Soc., 128, 725 (1981). [DOI: http://dx.doi.org/10.1149/1.2127495]   DOI
15 J. Guo, A. Suna, X. Chena, C. Wang, and A. Manivannan, Electrochimica Acta., 56, 3981 (2011). [DOI: http://dx.doi.org/10.1016/j.electacta.2011.02.014]   DOI
16 D. Dees, E. Gunen, D. Abraham, A. Jansen and J. Prakash, J. Electrochem soc., 152, A1409 (2005). [DOI: http://dx.doi.org/10.1149/1.1928169]   DOI