• 제목/요약/키워드: $Y_2O_3$ coating

검색결과 1,176건 처리시간 0.025초

HVOF 용사된 NiCoCrAlY 코팅의 산호막 관찰 (Microstructural Observation of Scales formed on HVOF-sprayed NiCoCrAlY Coatings)

  • 고재황;이동복
    • 한국재료학회지
    • /
    • 제14권2호
    • /
    • pp.110-114
    • /
    • 2004
  • High velocity oxy-fuel sprayed NiCoCrAlY coatings were oxidized between 1000 and $1200^{\circ}C$ in air, and the oxide scales were examined by XRD, SEM/EDS, and EPMA. The unoxidized coatings consisted mainly of ${\gamma}$'$-Ni_3$Al, with some ${\gamma}$-Ni. The major oxide formed on the coatings was $\alpha$ $-Al_2$$O_3$. Additionally, (CoCr$_2$$O_4$, $CoAl_2$$O_4$) spinels and $Al_{5}$ $Y_3$$O_{12}$ coexisted. NiO was not found, despite of high amount of Ni in the coating. Below the oxide layer, internally formed $Al_2$$O_3$ existed.

전기아연도금 강판의 몰리브데이트 화성처리 (Molybdate Chemical Conversion Coating of Electro-Galvanized Steel)

  • 김헌태;김인수
    • 한국표면공학회지
    • /
    • 제37권4호
    • /
    • pp.200-207
    • /
    • 2004
  • Molybdate chemical conversion coating layer formed on EGI has been studied in view of corrosion resistance, surface morphologies, and phases formed. It was found that coating layer consists of$ MoO_3$, $MoO_2$, Mo oxides having lower valences than 4 and ZnO. It is interesting to note that the coating layer formed at high Mo concentration (30 g/l) in the temperature range of $40-60^{\circ}C$ exhibited relatively high corrosion resistance, although thickness of coating layer is nearly identical with those formed under the other conditions. It was believed that an increase of driving force due to high Mo concentration plays an important role in the formation of corrosion-resistant coating layer, probably due to tile formation of dense coating layer.

High-$I_c$ single-coat YBCO films prepared by the MOD process

  • Lee, J.W.;Shin, G.M.;Yoo, S.I.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제13권4호
    • /
    • pp.22-25
    • /
    • 2011
  • A single-coat $YBa_2Cu_3O_{7-{\delta}}$ (YBCO) film of high critical currents ($I_c$) could be successfully fabricated by optimizing the viscosity of the coating solution in the metal-organic deposition (MOD) process. From a Ba-deficient coating solution (Y: Ba: Cu = 1: 1.5: 3) having the viscosity of 212 $mPa{\cdot}sec$, 0.9 ${\mu}m$-thick single coat YBCO film with the $I_c$ value of 289 A/cm-width ($J_c$ = 3.2 MA/$cm^2$) at 77 K was achievable on the $SrTiO_3$ (STO) substrate, which was superior to that of our previous report for 0.8 ${\mu}m$-thick single coat YBCO film from a stoichiometric coating solution (Y: Ba: Cu = 1: 2: 3) on the $LaAlO_3$ (LAO) substrate. This result might be attributed to denser and more homogeneous microstrcuture in the case of the YBCO film from the Ba-deficient coating solution.

Continuous Nanocomposite Coatings on a Phosphor for the Enhancement of the Long-term Stability

  • Kim, Jong-Woung;Song, Jung-Oh;Kim, Chang-Keun
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.233-233
    • /
    • 2006
  • [ $Y_{2}O_{2}S:Eu$ ], a red phosphor, coated with silica nanoparticles or nanocomposites composed of silica nanoparticles and polymeric materials such as PMMA and PVP was prepared via sol-gel process. Samples were prepared from four different methods coded P1, P2, P3, and P4. P1 includes a conventional sol-gel process and a dip-coating method while P2 has the same procedure with P1 except that nanocomposites containing both silica nanoparticles and polymer prepared by sol-gel process were used as coating materials. In P3 method, phosphors were dispersed in a solution containing silica precursor, i.e., TEOS and then polymerization was performed to coat onto the phosphors surface while P4 followed the same procedure with P3 except that a solution containing both TEOS and organic monomer were used in preparing coating materials. Among various coating methods examined in this study, uniform coating of phosphor could be achieved by using method P4, i.e., phosphor surface coating in a solution containing hydrophobic monomer and TEOS. Furthermore, $Y_{2}O_{2}S:Eu$ red phosphor coated with nanocomposite composed of PMMA matrix and silica nanoparticles exhibited enhanced PL intensity and long-term stability.

  • PDF

티타늄 및 구리증착이 알루미나 곡강도에 미치는 영향 (The Effect of Titanium and Copper Coatings on the Modulus of Rupture of Alumina)

  • 황하룡;이임렬
    • 한국표면공학회지
    • /
    • 제27권1호
    • /
    • pp.29-35
    • /
    • 1994
  • The effects of coating of 3$\mu\textrm{m}$ thickness on the mechanical property of alumina after heat treatment at 100$0^{\circ}C$ for 30minutes under $10^{-6}$torr vacuum was quantified in terms of modulus of rupture(MOR) using Weibull plot. While the copper coating did not change MOR of alumina due to the nonwetting behavior of Cu on $Al_2O_3$, the reactive titanium metal coating caused a noticeable 29% reduction in averaged MOr strength. This was related with the combined effects of microcracks in coating formed during heat treatment and good bonding character between Ti and $Al_2O_3$. The effect of cosputtering of Ti and Cu, bilayer coatings of Cu/Ti and Ti/Cu were also investigated. It was found that Ti, cosputtered, Cu/ti and Ti/Cu coatings reduced MOR strength of alumina in the order listed. This was correlated with the amount of Ti at coating/alumina inter-face associated with a coated layer or segregation of Ti during heat treatment.

  • PDF

A Novel Atomic Layer Deposited Al2O3 Film with Diluted NH4OH for High-Efficient c-Si Solar Cell

  • Oh, Sung-Kwen;Shin, Hong-Sik;Jeong, Kwang-Seok;Li, Meng;Lee, Horyeong;Han, Kyumin;Lee, Yongwoo;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권1호
    • /
    • pp.40-47
    • /
    • 2014
  • In this paper, $Al_2O_3$ film deposited by thermal atomic layer deposition (ALD) with diluted $NH_4OH$ instead of $H_2O$ was suggested for passivation layer and anti-reflection (AR) coating of the p-type crystalline Si (c-Si) solar cell application. It was confirmed that the deposition rate and refractive index of $Al_2O_3$ film was proportional to the $NH_4OH$ concentration. $Al_2O_3$ film deposited with 5 % $NH_4OH$ has the greatest negative fixed oxide charge density ($Q_f$), which can be explained by aluminum vacancies ($V_{Al}$) or oxygen interstitials ($O_i$) under O-rich condition. $Al_2O_3$ film deposited with $NH_4OH$ 5 % condition also shows lower interface trap density ($D_{it}$) distribution than those of other conditions. At $NH_4OH$ 5 % condition, moreover, $Al_2O_3$ film shows the highest excess carrier lifetime (${\tau}_{PCD}$) and the lowest surface recombination velocity ($S_{eff}$), which are linked with its passivation properties. The proposed $Al_2O_3$ film deposited with diluted $NH_4OH$ is very promising for passivation layer and AR coating of the p-type c-Si solar cell.

알루미나 졸-겔 코팅 공정을 이용한 질화규소의 상압소결 및 물질 특성 (Application of Sol-Gel Coating Process in Pressureless Sintering of Si3N4 and Their Properties)

  • 임경란;임창섭
    • 한국세라믹학회지
    • /
    • 제31권1호
    • /
    • pp.69-73
    • /
    • 1994
  • Si3N4 ceramics could be densified above 3.2g/㎤ with pressureless sintering at below 178$0^{\circ}C$ by coating Si3N4 and Y2O3 powder with an alumina sol. Substitution a portion of Al2O3 with AlN improved densification. Additional milling of the coated powder in large improvement in bending strength greater than 800 MPa (4-point).

  • PDF

플라즈마 용사 및 EB-PVD에 의한 열벽코팅 수명에 대한 산화물 생성의 영향 (The Effect of Oxide Formation on the Lifetime of Plasma Sprayed or EB-PVD Thermal Barrier Coatings)

  • 이의열
    • 한국표면공학회지
    • /
    • 제27권2호
    • /
    • pp.91-98
    • /
    • 1994
  • For the plasma sprayed as well as the EB-PVD thermal barrier coatings, the fracture paths within the oxidation products developed at the interface between the partially stabilized zirconia ceramic coating and NiCoCrAlY bond coat during cyclic thermal oxidation has been investigated. It was observed that the fracture in the oxidation products primarily took place within the oxide such as $Ni_{1-x}Co_3(Al_,Cr)_2O_4$ or at the interface between the oxide and $Al_2O_3$. It was found that Al2O3 developed first, followed by the Ni/Co/Cr rich oxides such as ,,$Ni_{1-x}Co_x(Al_,Cr)_2O_4$ $Cr_2O_3$and NiO at the interface between the ceramic coating and the bond coat in a cyclic high temperature environment. It was therfore concluded that the formation of the oxide containing Ni, Cr and Co was a life-limiting event for thermal barrier coatings during cyclic thermal oxidation.

  • PDF

Au/TiO2 core-shell 나노입자의 합성에 있어서 Au 나노입자의 분산특성에 미치는 Mercaptoundecanoic acid (MUA)의 피복 효과 (The Effect of Mercaptoundecanoic Acid (MUA) Coating on Dispersion Property of Au Nanoparticles in Synthesis of Au/TiO2 Core-shell Nanoparticles)

  • 유연태;김병규
    • 한국재료학회지
    • /
    • 제16권12호
    • /
    • pp.754-760
    • /
    • 2006
  • Mercaptoundecanoic acid (MUA) has been used to enhance the dispersity of Au nanoparticles in organic solvent and the affinity between the Au nanoparticles surface and titanium dioxide shell in the synthesis of $Au/TiO_2$ core-shell composite nanoparticles. The dispersity of the MUA-coated Au nanoparticles in ethanol aqueous solution with different concentration of $H_2O$ was investigated by UV-Vis. absorption spectrum and the coating amount of MUA was varied from 0.02 mM to 1.0 mM. The MUA-coated Au nanoparticles were highly dispersed in pure $H_2O$ in the wide range of the coating amount of MUA. On the contrary, the MUAcoated Au nanoparticles showed an enhanced stability in the ethanol/$H_2O$=8/2 mixed solution only when the coating amount of MUA was 0.05 mM, and in the ethanol/$H_2O$=7/3 mixed solution when the coating amount of MUA was in the range from 0.02 mM to 0.17 mM. From this systematic study, it can be inferred that the stability and the dispersibility of Au nanoparticles in organic solvents are highly sensitive towards the amount of MUA coating.

유압실린더 세라믹코팅 기공률 최소화 방안 (Minimization of Porosity in Ceramic Coating on a Hydraulic Cylinder)

  • 정영호;문승재;유호선
    • 플랜트 저널
    • /
    • 제6권4호
    • /
    • pp.63-71
    • /
    • 2010
  • The best way to prevent the corrosion of piston rod is a selection of quality of the material and method of construction which minimize the porosity. The high velocity oxy fuel(HVOF) method, which generates lower porosity than existing plasma spray, was applied to ceramic laminated bond layer. Porosity percentage fell to bellow 2%, lower than that of plasma spray at 7%. Coating material of ceramic-coated main layer was selected as the $Cr_2O_3$ affiliation material, which is more dense than $Al_2O_3$ affiliation. To fill up the pores formed after the coating process, we sealed the bond layer and main layer. Sealing process was performed twice, once after the coating and once after the grinding. Upon the anti-corrosion test on the sealed sample and on the non-sealed sample, it is confirmed that the sealed sample was not corroded for 1,000 hours while the non-sealed sample was corroded within 48 hours.

  • PDF