• Title/Summary/Keyword: $Y_2BaCuO_5$ particles

Search Result 23, Processing Time 0.021 seconds

Direct fabrication of a large grain YBCO bulk superconductor without intermediate grinding step

  • Hong, Yi-Seul;Kim, Chan-Joong;Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.27-31
    • /
    • 2019
  • Large grain YBCO bulk superconductors are fabricated by the top-seeded melt growth (TSMG) or top-seeded infiltration growth (TSIG) method. Both growth methods use at least one of $YBa_2Cu_3O_{7-{\delta}}$, $Y_2BaCuO_5$, $BaCuO_3$ pre-reacted precursor powders. However, the synthesis of the pre-reacted powders includes multiple calcination runs which are cost-bearing and time-consuming. In this work, we report the successful growth of single-domain YBCO bulk superconductors directly by using the powder compact that has been pressed from the mixture of $Y_2O_3$, $BaCuO_3$ and CuO powders without any intermediate grinding step. Single-domain YBCO bulk superconductor has been also prepared by using $Y_2O_3$, $BaO_2$ and CuO powders without intermediate grinding step. Investigations on the trapped magnetic field and microstructure of the melt-processed specimen show that the elimination of the repeated processes of calcinations and pulverization has hardly affected on the crystal growth and the magnetic properties of the grown YBCO bulk superconductors. However, it is thought that the presence of residual carbon affects on the size of Y211 particles in melt-processed YBCO bulk superconductor.

Effect of Metal Oxide on the Superconductivity of YBCO

  • Lee, Sang-Heon
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1241-1242
    • /
    • 2006
  • Electromagnetic properties of $CeO_2$ doped and undoped YBaCuO superconductors were evaluated to investigate the effect of pinning center on the magnetization and magnetic shielding. The variation $\DeltaM$ with doping was maximum for 3% doping and decrease with further doping. The magnetic shielding was evaluated by measuring the induced voltage in secondary coil and the voltage initially set to 0.5V, decreased to 0.17V and 0.28V respectively for the undoped and 3% $CeO_2$ doped sample. The much less change in the induced voltage for the 3% doped sample is attributed to the increased flux shielding by shielding vortex current. The $CeO_2$ was converted to fine $BaCeO_3$ particles which were trapped in YBaCuO superconductor during the reaction sintering. The trapped fine particles, $BaCeO_3$ may be acted as a flux pinning center.

  • PDF

Superconductivity of Ce$O_2$-added Y-Ba-Cu-0 Superconductors Prepared by Partial Melt Process (준용응법으로 제조한 Y-Ba-Cu-O 초전도체에서 Ce$O_2$첨가에 따른 초전도성)

  • Kim, Chan-Joong;Kim, Ki-Baik;Lee, Kyu-Won;Won, Dong-Yeon
    • Korean Journal of Materials Research
    • /
    • v.2 no.3
    • /
    • pp.202-206
    • /
    • 1992
  • The $CeO_2$-added Y-Ba-Cu-O oxides were prepared by the partial melt process involving the peritectic reaction, liquid + 2-1-1 phase ${\rightarrow}$ 1-2-3 phase, to investigate the effect of the dopant on microstructure and superconductivity. During the peritec reaction, all the added $CeO_2$ was converted to $BaCeO_3$ particles which were finely dispersed in large 1-2-3 grains. Superconducting transition temperature($T_{c}R=0$ point) of the partial-melted samples was as high as 90K regardless of $CeO_2$ content up to 5wt%, which is owing to the separation of the second phase from the 1-2-3 superconducting phase.

  • PDF

YBCO Bulk Superconductors Prepared by Solid-liquid Melt Growth (고액용융성장법을 이용한 YBCO 단결정 제조)

  • Han, Sang-Chul;Lee, Jeong-Phil;Park, Byeong-Cheol;Jeong, Neyon-Ho;Park, Byung-Jun;Jung, Se-Yong;Han, Young-Hee;Sung, Tae-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.860-863
    • /
    • 2009
  • YBCO bulks with fine $Y_2BaCuO_5$(Y211) particles have been prepared by the top-seed modified powder melting process method, Solid-Liquid Melt Growth(SLMG), with $Y_2O_3$, $BaCuO_2$ and CuO mixing precursor. By using $Y_2O_3$ instead of $Y_2BaCuO_5$ as precursor, the processing became to be simpler and cheaper than the current powder melting process. The microstructures, trapped field and critical current density of the various conditioned YBCO bulks have been analyzed and the effect of Pt additive was studied. The different trapped magnetic field values of the several samples have been explained in the viewpoint of their microstructures. The fabrication of large-sized YBCO single domain has been conducted.

Suppression of the surface nucleation of YBa$_2$Cu$_3$O$_7-y$ by CeO$_2$ coating of the top-seeded melt processed YBCO superconductors

  • Kim, Ho-Jin;Jun, Byung-Hyuk;Kim, Chan-Joong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.1-5
    • /
    • 2003
  • The effect of CeO$_2$ coating on the surface nucleation of the top-seeded melt-growth processed YBCO superconductors was studied. It was effective that the coating of Y123 compact surfaces by CeO$_2$ powder suppressed the undesirable subsidiary YBa$_2$Cu$_3$O$_{7-y}$ (Y123) nucleation during melt processing. BaCeO$_3$ was formed in the CeO$_2$-coated layers, which might cause a CuO-excessive liquid at the partial melt stage of $Y_2$BaCuO$_{5}$(Y211) plus liquid, and thus the Y123 nucleation at the YBCO compact surfaces could be suppressed during the melt growth of Y123 grain. In addition, the CeO$_2$ refined the Y211 particles near the compact / coating interface. While the levitation forces of the top surfaces with and without CeO$_2$ coating were similar to each other, the levitation force of the interior of the CeO$_2$ coated sample was higher than that of the interior of the sample without CeO$_2$ coating, which was attributed to the suppression of subsidiary Y123 nucleation at the compact walls.s.s.

Magnetic Force Properties of Superconducting Bulk (초전도 벌크의 자기적 특성을 위한 간편한 시스템)

  • Sang Heon Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.70-73
    • /
    • 2023
  • To improve superconductor properties, the size of the crystal grains of the superconductor should be adjusted, the amount of electricity flowing through the superconductor should be increased, and the superconductor should be designed to withstand external magnetic fields. It is necessary to control the microstructure so that many flux pinning centers are developed inside the superconductor so that defects are generated physically or chemically, and the micro secondary phase for trapped magnetic flux must be dispersed inside the superconductor. In order to measure the superconducting magnetic force of the superconducting bulk in a simplified manner, the superconducting magnetic force was analyzed using an Nd-Fe-B permanent magnet of 3.80 kG. In particular, by delaying the growth of partially melted Y2BaCuO5 particles, we devised a plan to refine Y2BaCuO5 particles to effectively improve superconducting magnetic force, and analyzed superconducting magnetic force in a single crystal YBa2Cu3O7-y superconducting bulk using a gauss meter. The melted superconducting bulk traps 80% or more of the applied magnetic field, and can be used as a bulk magnet of high magnetic field magnetization applicable to electric power equipment.

Preparation of YBa2Cu3O7-y Superconductor Using Melt Method (용융법에 의한 YBa2Cu3O7-y 초전도체 제작)

  • Lee, Sang Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.622-625
    • /
    • 2022
  • YBa2Cu3O7-y bulk as a high temperature oxide superconducting conductor has the high critical temperature of 92 K. YBa2Cu3O7-y bulk superconductors have been fabricated by a seeded melting growth. Magnetic properties were studied by using superconductor of melted YBa2Cu3O7-y oxides. It was demonstrated that Y2BaCuO5 particles acts as a pinning center which plays an important role on the magnetic properties. The thickness of the upper and lower pellets of the YBa2Cu3O7-y bulk was formed at 40 mm with 55 g of the composition, and the YBa2Cu3O7-y superconductor was manufactured through a heat treatment process. Manufacturing the superconducting bulk, it is possible to improve the pore density of the superconducting bulk by providing a path through which oxygen could be emitted.

Mossbauer Studies of the $H_2$ Reduction Effects On Magnetic Properties of Sr-Ba Substituted Hexgonal Ferrite (치환형 Sr-Ba 육방 페라이트들의 자기적 성질에 수소환원이 미치는 효과에 관한 Mossbauer 분광학적 연구)

  • 박재윤;권명회;이재광
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.1
    • /
    • pp.35-40
    • /
    • 1999
  • Sr substituted materials for some barium in M-type barium ferrite powder and Co-Ti substituted Sr-Ba hexagonal ferrite powder were prepared by citrate sol-gel method and 2 MOE sol-gel method these hexaferrite particles were reduced for 1hr in the hydrogen gas. The reduction temperatures were varied in the range of 250 $^{\circ}C$ to 500 $^{\circ}C$. X-ray diffraction patterns were measured using diffractometer with Cu $K_{\Alhpa}$ radiation. Mossbauer absorption spectra were measured with a constant acceleration spectrometer. We have focused on studying the origin of increasing $M_s$ by M$\"{o}$ssbauer spectroscopy. Ferrite particles which were sintered at 105$0^{\circ}C$ were found to be typical magnetoplumbite structure and single phase. XRD patterns with varying the reduction temperatures in $Sr_{0.5}Ba_{0.5}Fe_{10}O_{19}$ indicates ferrites particles become composite hexaferrites containing $\alpha$-Fe at T_{red}=350 \;$^{\circ}C$$. On the otherhand, it was found that $Co^{2+}$ ions and $Ti^{4+}$ ions in $Sr_{0.7}Ba_{0.3}Fe_{10}CoTiO_{19}$ prevent from changing $Fe^{3+}$ ions to $\alpha$-Fe during the $H_2$ reduction. Comparing Mossbauer results with XRD results, we have determined most of $\alpha$-Fe are reduced from $4f_{vi}$ sites and 12k sites of $Fe^{3+}$ ions. These $\alpha$-Fe phase bring the induced anisotropy and increase saturation magnetization $M_s$.TEX>.

  • PDF

Development of Large-sized YBCO High Temperature Superconductor Bulk Magnets and Actuator (대면적 YBCO 고온 초전도 벌크 자석 및 조작기 개발)

  • Han, Sang-Chul;Park, Byung-Jun;Jung, Se-Yong;Han, Young-Hee;Lee, Jong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.450-455
    • /
    • 2015
  • For the practical application of a YBCO superconductor bulk, the superconductor bulk magnet with high magnetic field on a large area surface should be fabricated. To make this, YBCO single crystal bulks with fine $Y_2BaCuO_5$(Y211) particles have been prepared by the top-seed melt growth(TSMG) method with $YBa_2Cu_3O_x$, $Y_2O_3$, and $CeO_2$ mixing precursor. By using $Y_2O_3$ instead of $Y_2BaCuO_5$ as precursor, the manufacturing process became simpler and more economical. The microstructures, trapped field and critical current density of the various conditioned YBCO bulks have been observed, analyzed and measured. The different characteristic values of the several samples have been analyzed from the viewpoint of their microstructures. We have developed a $8{\times}12cm$ size superconductor bulk magnet, up to 3 T class, by using the 4 T class-high field superconducting magnetizer and confirmed the applicability of the transmission level circuit breakers by measuring the strength and speed of the superconductor bulk magnet actuator.

A Study on the Magnetic Properties of Ceramics Superconductors for Simpllified Testing System (간소화 시스템적용을 위한 자기특성)

  • Lee, Sang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.339-341
    • /
    • 2012
  • The high Tc superconductor of YBCO system with the nominal composition of precursor was prepared from mixed powders of $Y_2O_3$, $BaCO_3$, CuO and $TiO_2$ by the thermal pyrolysis method. The effect of $TiO_2$ doping to Y based ceramics superconductors fabricated by the thermal pyrolysis reaction, to investigate the effect of the dopant on the superconductivity. The voltage appearing across the field-cooled HTS sample increased with external magnetic field. The improvement of critical current property as well as the mechanical property is important for the application. The improvement of the critical current can be achieved by forming the nano size defect working as a flux pining center inside the superconductor. We simply added $TiO_2$ to starting materials to dope $TiO_2$ and observed an increase in the trapped field and the critical current density up to at least 5 wt % $TiO_2$. The $TiO_2$ was converted to fine $BaTiO_3$ particles which were trapped in YBCO matrix during the sintering process. We observed a peak effect of Jc that can be attributed to $TiO_2$ doping and results suggest that introducing a proper amount of pinning centers can significantly enhance current density.