• Title/Summary/Keyword: $W_{3}$ powders

Search Result 207, Processing Time 0.019 seconds

Preparation of $Al_2O_3$-$ZrO_2$ Composite Powders by the Use of Emulsions : III. Emulsion-Coprecipitation Method (에멀젼을 이용한 $Al_2O_3$-$ZrO_2$복합분체의 제조 : III. 에멀젼-공침법)

  • 현상훈;김의수
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.4
    • /
    • pp.487-494
    • /
    • 1990
  • $Al_2O_3$-20w/o $ZrO_2$ composite powders were prepared by the emulsion-coprecipitation method and the effects of preparative conditions on powder characteristics were investigated. In the preparation of $Al_2O_3$-$ZrO_2$ composite powders, toluene was used instead of kerosene as the oil phase in emulsions. After coprecipitation, the emulsion was easily broken into a single liquid phase by adding methanol, and then precipitates could be effectively collected by filteration. The fact that all $ZrO_2$ phases present at room temperature in composite powders calcined at $1100^{\circ}C$ after washed by methanol had a tetragonal structure confirmed that methanol-washing enhanced the dispersibility of fine $ZrO_2$ particles in $Al_2O_3$ matrix. $Al_2O_3$-$ZrO_2$ composite powders were spherical particles of 0.2${\mu}{\textrm}{m}$ diameter. Pellets sintered at $1650^{\circ}C$ for 2hrs showed the relative theoretical density of 97.3% and the fracture toughness of 5.01MN/$m^{3/2}$.

  • PDF

Study on Oxidation Behavior of (W,Mo)$Si_2$ Powders in Air at 400, 500 and $600^{\circ}C$

  • Peizhong, Feng;Xuanhui, Qu;Xiaohong, Wang;Farid, Akhtar
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1149-1150
    • /
    • 2006
  • The oxidation of (W,Mo)$Si_2$ powders has been investigated at 400, 500 and $600^{\circ}C$ for 12.0 hours in air. It was shown that the low temperature oxidation resistance of (W,Mo)$Si_2$ was worse than that of $MoSi_2$, and they showed great changes in mass, volume and colour. Especialy at $500^{\circ}C$, the amount of volume expansion of (W,Mo)$Si_2$ was as high as about $7\sim8$ times and color changed from black to yellow after 4.0h with $MoO_3$, $WO_3$, (W,Mo)$O_3$ and amorphous $SiO_2$ as main reaction products. The mass gain and oxidation rate were relatively slower at $400^{\circ}C$ and $600^{\circ}C$ than that at $500^{\circ}C$.

  • PDF

Extrusion Behavior of Gas Atomized Mg Alloy Powders (가스분무 Mg-Zn-Y 합금분말의 압출거동)

  • Chae, Hong-Jun;Kim, Young-Do;Lee, Jin-Kyu;Kim, Jeong-Gon;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.251-255
    • /
    • 2007
  • This work is to report not only the effect of rapid solidification of $MgZn_{4.3}Y_{0.7}$ alloys on the micro-structure, but also the extrusion behavior on the materials properties. The average grain size of the atomized powders was about $3-4{\mu}m$. The alloy powders of $Mg_{97}Zn_{4.3}Y_{0.7}$, consisted of I-Phase (Icosahedral, $Mg_{3}Zn_{6}Y_{1}$) as well as Cubic structured W-Phase ($Mg_{3}Zn_{3}Y_{2}$), which was finely distributed within ${\alpha}-Mg$ matrix. The oxide layer formed along the Mg surface was about 48 nm in thickness. In order to study the consolidation behavior of Mg alloy powders, extrusion was carried out with the area reduction ratio of 10:1 to 20:1. As the ratio increased, fully deformed and homogeneous microstructure could be obtained, and the mechanical properties such as tensile strength and elongation were simultaneously increased.

Functionally Graded Properties Induced by Direct Laser Melting of Compositionally Selected Metallic Powders (레이저 직접 용융 시 금속분말의 함량조정을 통한 경사물성 부여)

  • Han, S.W.;Ji, W.J.;Lee, C.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.5
    • /
    • pp.303-310
    • /
    • 2014
  • Functionally graded properties are characterized by the gradual variation in composition and structure through the volume of the material, resulting in corresponding gradation in properties of the material. Direct laser melting (DLM) is a prototyping process whereby a 3-D part is built layer-wise by melting metal powder with laser scanning. Studies have been performed on the functionally graded properties induced by direct laser melting of compositionally selected metallic powders. For the current study, quadrangle structures were fabricated by DLM using Fe-Ni-Cr powders having variable compositions. Hardness and EDX analysis were conducted on cross-sections of the fabricated structure to characterize the properties. From the analysis, it is shown that functionally graded properties can be successfully obtained by DLM of selected metallic powders with varying compositions.

Effect of Ti Coated Diamond Grit on Performance of Diamond Tool (티타늄 코팅된 다이아몬드 지립이 다이아몬드 공구의 성능에 미치는 영향)

  • 임동필;임대순;민언기;임종관
    • Tribology and Lubricants
    • /
    • v.13 no.3
    • /
    • pp.102-107
    • /
    • 1997
  • Diamond grit was coated with Ti by RF Sputtering to investigate the effect of coated diamond particles on performance of diamond impregnated saw. Coated and uncoated powders were separately mixed with 70Co-30W powders by conventional milling technique. Hot pressing was carried out to make specimens. The wear test were carried out with these two types of diamond impregnated specimens. It was demonstrated that Ti coating was effective in improving the ability of grit retention and thus enhanced the tribological performance of diamond tool.

Electromagnetic Wave Absorption Properties of Fe-based Nanocrystalline P/M sheets with Al2O3 additive (Al2O3 첨가에 따른 Fe계 나노결정립 P/M시트의 전자파 흡수특성)

  • Woo, S.J.;Cho, E.K.;Cho, H.J.;Lee, J.J.;Sohn, K.Y.;Park, W.W.
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.265-271
    • /
    • 2007
  • Electromagnetic wave absorbing materials have been developed to reduce electromagnetic interference (EMI) for electronic devices in recent years. In this study, Fe-Si-B-Nb-Cu base amorphous strip was pulverized using a jet mill and an attritor and heat-treated to get flake-shaped nanocrystalline powders, and then the powders were mixed, cast and dried with dielectric $Al_{2}O_{3}$ powders and binders. As a result, the addition of $Al_{2}O_{3}$ powders improved the absorbing properties of the sheets noticeably compared with those of the sheets without dielectric materials. The sheet mixed with 2 wt% $Al_{2}O_{3}$ powder showed the best electromagnetic wave absorption, which was caused by the increase of the permittivity and the electric resistance due to the dielectric materials finely dispersed on the Fe-based powder.

Effects of Evaporation Processes and a Reduction Annealing on Thermoelectric Properties of the Sb-Te Thin Films (증착공정 및 환원분위기 열처리가 Sb-Te 박막의 열전특성에 미치는 영향)

  • Bae, Jae-Man;Kim, Min-Young;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.77-82
    • /
    • 2010
  • Effects of evaporation processes and a reduction annealing on thermoelectric properties of the Sb-Te thin films prepared by thermal evaporation have been investigated. The thin film evaporated by using the powders formed by crushing a $Sb_2Te_3$ ingot as an evaporation source exhibited a power factor of $2.71{\times}10^{-4}W/m-K^2$. The thin film processed by evaporation of the mixed powders of Sb and Te as an evaporation source showed a power factor of $0.12{\times}10^{-4}W/m-K^2$. The thin film fabricated by coevaporation of Sb and Te dual evaporation sources possessed a power factor of $0.73{\times}10^{-4}W/m-K^2$. With a reduction annealing at $300^{\circ}C$ for 2 hrs, the power factors of the films evaporated by using the $Sb_2Te_3$ ingot-crushed powders and coevaporated with Sb and Te dual evaporation sources were remarkably improved to $24.1{\times}10^{-4}W/m-K^2$ and $40.2{\times}10^{-4}W/m-K^2$, respectively.

Manufacturing and Properties of Low Vacuum Plasma Sprayed W-Carbide Hybrid Coating Layer (진공 플라즈마 스프레이 공정을 이용한 W계 복합 코팅층의 제조 및 특성 연구)

  • Cho, Jin-Hyeon;Jin, Young-Min;Ahn, Jee-Hoon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.226-237
    • /
    • 2011
  • W-ZrC and W-HfC composite powders were fabricated by the Plasma Alloying & Spheroidization (PAS) method and the powders were sprayed into hybrid coating layers by using Low Vacuum Plasma Spray (LVPS) process, respectively. Microstructure, mechanical properties, and ablation characteristics of the fabricated coating layers were investigated. The LVPS process led to successful production of W-Carbide hybrid coatings, approximately 400 ${\mu}M$ or above in thickness. As the substrate preheating temperature increased from $870^{\circ}C$ to $917^{\circ}C$, the hardness of the W-ZrC coating layer increased due to decreased porosity. Vickers hardness showed higher value (about 108.4 HV) in W-ZrC hybrid coating material compared to that of W-HfC while adhesive strength was found to be similar in both coating layers. The plasma torch test revealed good ablation resistance of the W-Carbide hybrid coating layers. The relatively high performance W-ZrC coating layer at the elevated temperature is thought to be attributed to both the strengthening effect of ZrC particle remained in the layer and the formation of ZrO2 phase with high temperature stability.

Magnetic Properties of Amorphous FeCrSiBC Alloy Powder Cores Using Phosphate-coated Powders

  • Jang, Dae-Ho;Kim, Kwang-Youn;Noh, Tae-Hwan
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.126-129
    • /
    • 2006
  • The phosphate coating on the $(Fe_{0.97}Cr_{0.03})_{76}(Si_{0.5}B_{0.5})_{22}C_2$ amorphous powders with an average size of 10 ${\mu}m$ in diameter has been carried out in aqueous 1.0-2.0 wt% $H_3PO_4$ solutions, and the consolidation behavior and magnetic properties of their compressed powder cores has been investigated. The phosphate coating could provide efficient electrical insulation between amorphous powders and improved consolidation ability at room temperature. Especially when the powders were treated in more concentrated phosphoric acid solution, enhanced phosphate covering and higher frequency/dc-bias stability were achieved. The powder cores phosphate-coated in 2.0 wt% $H_3PO_4$ solution exhibited constant permeability of 21 up to 10 MHz, 110 of the quality factor at 0.9 MHz, 610 mW/cm3 core loss at 100 kHz/0.1 T and 89 of percent permeability at 100 kHz.