• Title/Summary/Keyword: $V_e$

Search Result 7,105, Processing Time 0.288 seconds

h-BN Graphene 합성에 의한 태양열전지

  • Choe, Hong-Yeong;U, Jun-Hyeok
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.405-407
    • /
    • 2015
  • Graphene의 bandgap이 0eV이고 hBN의 bandgap이 4~5eV라는 이기 때문에 두 물질을 혼합하였을 때 태양전지로 쓰기 좋은 1.2eV의 bandgap을 가지는 물질을 만들 수 있을 거라 생각된다. 이 점을 착안하여 hBN에 Carbon을 도핑시켜 1.2eV의 bandgap을 갖는 물질을 이론적으로 만들어 보았다.

  • PDF

The Measurement and Analysis of LiF:Mg, Cu, Na, Si TL Material by Thermoluminescence Spectrum (LiF:Mg, Cu, Na, Si TL 물질의 열자극발광스펙트럼 측정 및 분석)

  • Lee, J.I.;Moon, J.H.;Kim, D.H.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.149-153
    • /
    • 2001
  • Three-dimensional thermoluminescence(TL) spectra of LiF: Mg, Cu, Na, Si TL material based on temperature, wavelength and intensity were measured and analyzed. The glow curves were obtained by integration of luminescence intensity for wavelength at each temperature, and various trapping parameters related to the trap formation were determined by analyzing these curves. Computerized glow curve deconvolution(CGCD) method which based on general order kinetics(GOK) model were used for the glow curve analysis. The glow curves of LiF:Mg, Cu, Na, Si TL material were deconvoluted to six isolated glow curves which have peak temperature at 333 K, 374 K, 426 K, 466 K, 483 K and 516 K, respectively. The 466 K main glow peak had an activation energy of 2.06 eV and a kinetic order of 1.05. This TL material was also found to have three recombination centers, 1.80 eV, 2.88 eV and 3.27 eV by TL spectra analysis based on Franck-Condon model. It showed that 2.88 eV is the dominant center, followed by 3.27 eV level, and 1.80 eV center is ascertained as emission center of this material even though its very weak emission intensity.

  • PDF

A study on CIGS thin film characteristic with composition ratio change (조성비 변화에 의한 CIGS박막 특성에 관한 연구)

  • Chu, Soon-Nam;Park, Jung-Cheul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2247-2252
    • /
    • 2012
  • In this paper, we produced CIGS thin film by co-evaporation method. During the process, substrate temperature and Ga/(In+Ga) composition ratio was altered to observe the change of resistivity and absorbance spectra measurements. As substrate temperature increased, resistivity decreased and as Ga/(In+Ga) composition ratio increased from 0.30 to 0.72, band gap also increased with the range of 1.26eV, 1.30eV, 1.43eV, 1.47eV. With the constant condition of composition ratio, resistivity decreased with increased thickness of the thin film. On this experiment, we assumed that optical absorbance ratio and optical current will be increased with CIGS thin film fabrication.

A Study on the Optical Properties of HgGa2S4 Single Crystal (HgGa2S4 단결정의 광학적 특성연구)

  • 이관교;이상열;강종욱;이봉주;김형곤;현승철;방태환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.969-974
    • /
    • 2003
  • HgGa$_2$S$_4$ single crystals were grown by the chemical transport reaction method. The HgGa$_2$S$_4$ single crystal crystallized into a defect chalcopyrite structure (I 4). The lattice constants of the single crystal were found to be a = 5.635 $\AA$ and c = 10.473 $\AA$. The direct and indirect optical energy gaps were found to be 2.84eV and 2.78eV, respectively. Photoluminescence peaks of HgGa$_2$S$_4$ single crystal were observed at 2.37 eV, 2.18 eV, and 1.81 eV. In the single crystal, the donor level of 0.25 eV, the acceptor levels of 0.97 eV and 0.41 eV were obtained by TSC, PICTS, and absorption measurements. The photoluminescence peaks were analyzed to relate to the indirect conduction band, the donor level, and the acceptor levels.

Growth and Characterization of $CuInS_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE) 방법에 의해 성장된 $CuInS_2$)

  • 최승평;홍광준
    • Korean Journal of Crystallography
    • /
    • v.11 no.3
    • /
    • pp.137-146
    • /
    • 2000
  • The stoichiometric mix of evaporating materials for he CuInS₂ single crystal thin films was prepared. To obtain the single crystal thin films, CuINS₂ mixed crystal was deposited on etched semi-insulator GaAs(100) substrate by the hot wall epitaxy(HWE) system. The source and substrate temperature were 640℃ and 430℃, respectively and the thickness of the single crystal thin films was 2 ㎛. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility deduced from Hall data are 9.64x10/sup 22//㎥ and 2.95x10/sup -2/ ㎡/V·s, respectively at 293 K. he optical energy gap was found to be 1.53 eV at room temperature. From the photocurrent spectrum obtained by illuminating perpendicular light on the c-axis of the thin film, we have found that the values of spin orbit coupling splitting ΔSo and the crystal field splitting ΔCr were 0.0211 eV and 0.0045 eV at 10K, respectively. From PL peaks measured at 10K, were can assign the 807.7 nm (1.5350 eV) peak to E/sub x/ peak of the free exciton emission, the 810.3 nm(1.5301 eV) peak to I₂ peak of donar-bound exciton emission and the 815.6 nm(1.5201 eV) peak to I₁ peak of acceptor-bound excition emission. In addition, the peak observed at 862.0 nm(1.4383 eV) was analyzed to be PL peak due to donor-acceptor pair(DAP).

  • PDF

Optical properties of $HgGa_2S_4$ single crystal ($HgGa_2S_4$ 단결정의 광학적 특성)

  • Kim, H.G.;Kim, N.O.;Kim, B.C.;Choi, Y.I.;Kim, D.T.;Hyun, S.C.;Bang, T.H.;Lee, K.S.;Gu, H.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05c
    • /
    • pp.47-52
    • /
    • 2004
  • $HgGa_2S_4$ single crystals were grown by the chemical transport reaction method. The $HgGa_2S_4$ single crystal crystallized into a defect chalcopyrite structure $(I\bar{4})$. The lattice constants of the single crystal were found to be a=5.635 ${\AA}$ and c=10.473 ${\AA}$. The direct and indirect optical energy gaps were found to be 2.84 eV and 2.78 eV, respectively. Photoluminescence peaks of $HgGa_2S_4$ single crystal were observed at 2.37 eV, 2.18 eV, and 1.81 eV. In the single crystal, the donor level of 0.25 eV, the acceptor levels of 0.97 eV and 0.41 eV were obtained by TSC, PICTS, and absorption measurements. The photoluminescence peaks were analyzed to relate to the indirect conduction band, the donor level, and the acceptor levels.

  • PDF

A Study on the Thermally Stimulated Current in CdS Single Crystal (CdS단결정의 열랄격전류에 관한 연구)

  • 유용택
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.7 no.2
    • /
    • pp.59-65
    • /
    • 1982
  • In this paper, the CdS single crystal, which was grown as piper-polish method, was Ion-bombarded with Sb and In, and the thermally stimulated current of the spot that was Ionbombarded was measured. In the sample which was individually bombarded by Sb and In, the over-lapping peak was found, this over lapping peak was separated, by the method of thermal cleaning, showing the trap levels of 0.25(eV) and 0.31(eV) at the temperature of 147(K) and 181(K). While the spot is being cooled down and excited with photolight at the same time, the trap level 0.25(eV) disappeared and the new trap level of 0.85(eV) appeared. It can be said that the better photo-conductive crystals, the T.S.C is better measured.

  • PDF

A Study on the Silicon Damages and Ultra-Low Energy Boron Ion Implantation using Classical Molecular Dynamics Simulation (고전 분자 동 역학 시뮬레이션을 이용한 실리콘 격자 손상과 극 저 에너지 붕소 이온 주입에 관한 연구)

  • 강정원;강유석;손명식;변기량;황호정
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.12
    • /
    • pp.30-40
    • /
    • 1998
  • We have calculated ultra-low energy silicon-self ion implantations and silicon damages through classical molecular dynamics simulation using empirical potentials. We tested whether the recently developed Environment-Dependent Interatomic Potential(EDIP) was suitable for ultra low energy ion implantation simulation, and found that point defects formation energies were in good agreement with other theoretical calculations, but the calculated vacancy migration energy was overestimated. Most of the damages that are produced by collision cascades are concentrated into amorphous-like pockets. Also, We upgraded MDRANGE code for silicon ion implantation process simulation. We simulated ultra-low energy boron ion implantation, 200eV, 500eV, and 1000eV respectively, and calculated boron profiles with silicon substrate temperature and tilt angle. We investigated that below 1000eV, channeling effect must be considered.

  • PDF

Cyclovoltametric Methods for the Ionization Potential and Electron Affinity of Iridium ppy Derivatives

  • Shin, Dong-Myung;Sohn, Byoung-Chung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.125-129
    • /
    • 2003
  • The effects of molecular structure on the redox properties of the organic electroluminescent materials (Ir$(ppy)_3$ Ir$(m-ppy)_3$ Ir$(p-toly)_3$) were studied using cyclic voltammetry and spectroscopy. These iridium complexes show reversible oxidation and reduction on the electrode, which produce the symmetric cyclic voltammogram. It indicates that these materials are very stable under repetitive oxidation/reduction cycles. The electrochemically determined ionization potentia/electron affinity values are 5.4OeV/3.02eV for Ir$(ppy)_3$, 5.36eV/2.96eV for Ir$(m-ppy)_3$, and 5.35eV/2.97eV for Ir$(p-toly)_3$ from the SCE(Standard Calomel Electrode). The electrically determined band gaps are 2.38eV (521nm), Ir$(ppy)_3$, 2.4OeV (517nm), Ir$(m-ppy)_3$, and 2.38eV (521nm). Ir$(p-toly)_3$, which are similar with the optical band gaps. The position of methyl group on 2-phenylpyridine (ppy) effects do not influence much on the ionization potential, electron affinity, and band gap of Ir$(ppy)_3$ derivatives.

Measurement of Localized Corrosion Resistance in Additively Manufactured Ti-6Al-4V Alloys Using Electrochemical Critical Localized Corrosion Temperature (E-CLCT) versus Electrochemical Critical Localized Corrosion Potential (E-CLCP) (적층가공 (3D 프린팅) Ti-6Al-4V합금의 국부부식 저항성 평가를 위한 임계국부부식온도와 임계국부부식전위 측정방법의 비교)

  • Seo, Dong-Il;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.37-43
    • /
    • 2021
  • Additively manufactured (AM) Ti-6Al-4V alloys exhibit a dominant acicular martensite phase (α'), which is characterized by an unstable energy state and highly localized corrosion susceptibility. Electrochemical critical localized corrosion temperature (E-CLCT, ISO 22910: 2020) and electrochemical critical localized corrosion potential (E-CLCP, ISO AWI 4631: 2021) were measured to analyze the localized corrosion resistance of the AM Ti-6Al-4V alloy. Although E-CLCP was measured under mild corrosive conditions such as human body, the validity of evaluating localized corrosion resistance of AM titanium alloys was demonstrated by comparison with E-CLCT. However, the mechanisms of resistance to localized corrosion on the as-received and heat-treated AM Ti-6Al-4V alloys under E-CLCT and E-CLCP differ at various temperatures because of differences in properties under localized corrosion and repassivation. The E-CLCT is mainly measured for initiation of localized corrosion on the AM titanium alloys based on temperature, whereas the E-CLCP yields repassivation potential of re-generated passive films of AM titanium alloys after breaking down.