• Title/Summary/Keyword: $V_2O_5$ thin films

Search Result 570, Processing Time 0.028 seconds

The Electrical Properties of $Ta_2O_5$ Thin Films by Atomic Layer Deposition Method (원자층 증착 방법에 의한 $Ta_2O_5$ 박막의 전기적 특성)

  • Lee, Hyung-Seok;Chang, Jin-Min;Jang, Yong-Un;Lee, Seung-Bong;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.41-46
    • /
    • 2002
  • In this work, we studied electrical characteristics and leakage current mechanism of Au/$Ta_2O_5$/Si metal-oxide-semiconductor (MOS) devices. $Ta_2O_5$ thin film (63nm) was deposited by atomic layer deposition (ALD) method at temperature of $235^{\circ}C$. The structures of the $Ta_2O_5$ thin films were examined by X-Ray Diffraction (XRD). From XRD, the structure of $Ta_2O_5$ was single phase and orthorhombic. From capacitance-voltage (C-V) analysis, the dielectric constant was 19.4. The temperature dependence of current-voltage (I-V) characteristics of $Ta_2O_5$ thin film was studied from 300 to 423 K. In ohmic region (<0.5 MVcm${-1}$), the resistivity was $2.4056{\times}10^{14}({\Omega}cm)$ at 348 K. The Schottky emission is dominant in lower temperature range from 300 to 323 K and Poole-Frenkel emission dominant in higher temperature range from 348 to 423 K.

  • PDF

Effects of the Introduction of UV Irradiation and Rapid Thermal Annealing Process to Sol-Gel Method Derived Ferroelectric Sr0.9Bi2.1Ta1.8Nb0.2O9 Thin Films on Crystallization and Dielectric/Electrical Properties (UV 노광과 RTA 공정의 도입이 Sol-Gel 법으로 제조한 강유전성 Sr0.9Bi2.1Ta1.8Nb0.2O9 박막의 결정성 및 유전/전기적 특성에 미치는 영향)

  • 김영준;강동균;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.7-15
    • /
    • 2004
  • The ferroelectric SBT thin films as a material of capacitors for non-volatile FRAMs have some problems that its remanent polarization value is relatively low and the crystallization temperature is quite high abovc 80$0^{\circ}C$. Therefore, in this paper, SBTN solution with S $r_{0.9}$B $i_{2.1}$T $a_{1.8}$N $b_{0.2}$$O_{9}$ composition was synthesized by sol-gel method. Sr(O $C_2$ $H_{5}$)$_2$, Bi(TMHD)$_3$, Ta(O $C_2$ $H_{5}$)$_{5}$and Nb(O $C_2$ $H_{5}$)$_{5}$ were used as precursors, which were dissolved in 2-methoxyethanol. SBTN thin films with 200 nm thickness were deposited on Pt/Ti $O_2$/ $SiO_2$/Si substrates by spin-coating. UV-irradiation in a power of 200 W for 10 min and rapid thermal annealing in a 5-Torr-oxygen ambient at 76$0^{\circ}C$ for 60 sec were used to promote crystallization. The films were well crystallized and fine-grained after annealing at $650^{\circ}C$ in oxygen ambient. The electrical characteristics of 2Pr=11.94 $\mu$C/$\textrm{cm}^2$, Ps+/Pr+=0.54 at the applied voltage of 5 V were obtained for a 200-nm-thick SBTN films. This results show that 2Pr values of the UV irradiated and rapid thermal annealed SBTN thin films at the applied voltage of 5 V were about 57% higher than those of no additional processed SBTN thin films. thin films.lms.s.s.

Effects of deposition temperature on the properties of SnO2:Eu3+ thin films grown by radio-frequency magnetron sputtering (증착 온도가 라디오파 마그네트론 스퍼터링으로 성장한 SnO2:Eu3+ 박막의 특성에 미치는 영향)

  • Shinho Cho
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.201-207
    • /
    • 2023
  • Eu3+-doped SnO2 (SnO2:Eu3+) phosphor thin films were grown on quartz substrates by radio-frequency magnetron sputtering. The deposition temperature was varied from 100 to 400 ℃. The X-ray diffraction patterns showed that all the thin films had two mixed phases of SnO2 and Eu2Sn2O7. The 880 nmthick SnO2:Eu3+ thin film grown at 100 ℃ exhibited numerous pebble-shaped particles. The excitation spectra of SnO2:Eu3+ thin films consisted of a strong and broad peak at 312 nm in the vicinity from 250 to 350 nm owing to the O2--Eu3+ charge transfer band, irrespective of deposition temperature. Upon 312 nm excitation, the SnO2:Eu3+ thin films showed a main emission peak at 592 nm arising from the 5D07F1 transition and a weak 615 nm red band originating from the 5D07F2 transition of Eu3+. As the deposition temperature increased, the emission intensities of two bands increased rapidly, approached a maximum at 100 ℃, and then decreased slowly at 400 ℃. The thin film deposited at 200 ℃ exhibited a band gap energy of 3.81 eV and an average transmittance of 73.7% in the wavelength range of 500-1100 nm. These results indicate that the luminescent intensity of SnO2:Eu3+ thin films can be controlled by changing the deposition temperature.

Preparation and Properties of Ba($Zr_{0.2}Ti_{0.8}$)$O_3$ Thin Films Grown by RF Magnetron Sputtering Method (RF Magnetron 스퍼터링법으로 성장시킨 Ba($Zr_{0.2}Ti_{0.8}$)$O_3$ 박막의 특성)

  • 최원석;장범식;김진철;박태석;이준신;홍병유
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.567-571
    • /
    • 2001
  • We investigated the structural and electrical properties of Ba(Zr$_{x}$Ti$_{1-x}$ )O$_3$(BZT) thin films with a mole fraction of x=0.2 and a thickness of 150 nm. BZT films were prepared on Pt/SiO$_2$/Si substrate with the various substrate temperature by a RF magnetron sputtering system. When the substrate temperature was above 50$0^{\circ}C$, we obtained multi-crystalline BZT films oriented to (110), (111), and (200) directions. As the substrate temperature increases, the films are crystallized and their dielectric constants become high. C-V characteristic curve of the film deposited at high temperature is more sensitive than that of the film deposited at low temperature. The parameters of the BZT film are as follows; the dielectric constants(dissipation factors) at 1 MHz are 95(0.021), 140(0.024), and 240(0.033) deposited at 400, 500, $600^{\circ}C$, respectively; the leakage currents at 666.7 kV/cm are 5.73, 23.5, and 72.8x10$^{-8}$ A/$\textrm{cm}^2$ fo the films deposited at 400, 500, and 600 $^{\circ}C$, respectively; the leakage currents at 666.7kV/cm are 5.73, 23.5, and 72.8x10$^{-8}$ A/$\textrm{cm}^2$ for the films deposited at 400, 500, $600^{\circ}C$, respectively. The BZT film deposited at 40$0^{\circ}C$ shows stable electrical properties, but dielectric constant for application is a little small.ll.

  • PDF

The study on characteristics and fabrications of ferroelectric $LiNbO_3$ thin films using RF sputtering (RF스퍼터링법을 이용한 강유전체 $LiNbO_3$ 박막의 제작과 특성연구)

  • Choi, Y.S.;Jung, S.M.;Choi, S.W.;Yi, J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1352-1354
    • /
    • 1998
  • $LiNbO_3$ transistor showed relatively stable characteristic, low interface trap density, and large remanent polarization. This paper reports ferroelectric $LiNbO_3$ thin films grown directly on p-type Si(100) substrates by 13.56 MHz rf magnetron sputtering system for FRAM applications. To take advantage of low temperature requirement for growing films, we deposited $LiNbO_3$ films lower than $300 ^{\circ}C$. RTA(Rapid Thermal Anneal) treatment was performed for as-deposited films in an oxygen atmosphere at $600^{\circ}C$ for 60 sec. We learned from X-ray diffraction that the RTA annealed films were changed from amorphous to poly-crystalline $LiNbO_3$ which exhibited (012), (015), and (022) orientations. The I-V characteristics of $LiNbO_3$ films before and after anneal treatment showed that RTA improved the leakage current of films. The leakage current density of films decreased from $10^{-5}$ to $10^{-7} A/cm^2$ at room temperature measurement. Breakdown electric field of the films exhibited higher than 500 kV/cm. The C-V curves showed the clockwise hysteresis represents ferroelectric switching characteristics. From C-V curves, we calculated dielectric constant of thin film $LiNbO_3$ as 27.5 which is close to that of bulk value.

  • PDF

Analysis of Photoluminescence for N-doped and undoped p-type ZnO Thin Films Fabricated by RF Magnetron Sputtering Method

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.24-27
    • /
    • 2009
  • N-doped ZnO thin films were deposited on n-type Si(100) and homo-buffer layer, and undoped ZnO thin film was also deposited on homo-buffer layer by RF magnetron sputtering method. After deposition, all films were in-situ annealed at $800^{\circ}C$ for 5 minutes in ambient of $O_2$ with pressure of 10Torr. X -ray diffraction shows that the homo-buffer layer is beneficial to the crystalline of N-doped ZnO thin films and all films have preferable c-axis orientation. Atomic force microscopy shows that undoped ZnO thin film grown on homo-buffer layer has an evident improvement of smoothness compared with N-dope ZnO thin films. Hall-effect measurements show that all ZnO films annealed at $800^{\circ}C$ possess p-type conductivities. The undoped ZnO film has the highest carrier concentration of $1.145{\times}10^{17}cm{-3}$. The photoluminescence spectra show the emissions related to FE, DAP and many defects such as $V_{Zn}$, $Zn_O$, $O_i$ and $O_{Zn}$. The p-type defects ($O_i$, $V_{Zn}$, and $O_{Zn}$) are dominant. The undoped ZnO thin film has a better p-type conductivity compared with N-doped ZnO thin film.

Fabrication and Characterization of Ferroelectric $(Bi,Sm)_4Ti_3O_{12}$ Thin Films Prepared by Chemical Solution Deposition

  • Kang, Dong-Kyun
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.170-173
    • /
    • 2006
  • Ferroelectric $Bi_{3.35}Sm_{0.65}Ti_3O_{12}(BST)$ thin films were deposited on $Pt(111)/Ti/SiO_2/Si(100)$ substrates by a sol-gel spin-coating process. In this experiments, $Bi(TMHD)_3$, $Sm_5(O^iPr)_{13}$, $Ti(O^iPr)_4$ were used as precursors, which were dissolved in 2-methoxyethanol. Thereafter, the thin films with the thickness, of 240nm were annealed from 600 to $720^{\circ}C$ in oxygen atmosphere for 1 hr, and post-annealed in oxygen atmosphere for 1 hr after deposition of Pt electrode to enhance the electrical properties. The remanent polarization and coercive voltage of the BST thin films annealed at $720^{\circ}C$ were $19.48\;{\mu}C/cm^2$ and 3.40 V, respectively, and a fatigue-free characteristics. As a result, Sm-substituted bismuth titanate films with good ferroelectric properties and excellent fatigue resistance are useful candidates for ferroelectric memory applications.

  • PDF

Structure and Ferroelectric properties of BCeT Thin Films (BCeT 박막의 구조 및 강유전 특성)

  • Kim, Kyoung-Tae;Kim, Chang-Il;Kim, Tae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.245-248
    • /
    • 2003
  • Randomly oriented ferroelectric cerium-substituted $Bi_4Ti_3O_{12}$ thin films have been prepared by using metal-organic decomposition method. The layered perovskite structure was investigated using annealing for 1 h in the temperature range from $550\;{\sim}\;750\;^{\circ}C$. The structure and morphology of the films were characterized using X-ray diffraction and scanning electron microscopy The $Bi_{3.4}Ce_{0.6}Ti_3O_{12}$ (BCeT) thin films showed a perovskite phase and dense microstructure. The grain size of the BCeT films increasedwith increasing annealing temperature. The hysteresis loops of the films were well defined at temperatures above $600\;^{\circ}C$. The 200-nm-thick BCeT thin films annealed at $650\;^{\circ}C$ showed a large remanent polarization (2Pr) of 59.3 ${\mu}C/cm^2$ at an applied voltage of 10 V. The BCeT thin films showed good fatigue endurance up to $5\;{\times}\;10^9$ bipolar cycling at 5 V and 100 kHz.

  • PDF

Structure and Dielectric properties of BST Thin Films prepared by Sol-gel method for Tunable element application (Tunable 소자 응용을 위한 Sol-gel 법으로 제작된 BST 박막의 Bi 첨가에 따른 구조적, 유전적 특성)

  • Kim, Tae-Hyung;Kim, Kyoung-Tae;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.565-568
    • /
    • 2004
  • An alkoxide-based sol-gel method was used to fabricate $Ba_{0.6}Sr_{0.4}TiO_3$ thin films doped by Bi from 5 to 20 mol% on a Pt/Ti/SiO2/Si substrate. The structural and dielectric properties of BST thin films were investigated as a function of Bi dopant concentration. The dielectric properties of the Bi doped BST films were strongly dependent on the Bi contents. The dielectric constant and dielectric loss of the films decreased with increasing Bi content. However, the leakage current density of the 10 mol% Bi doped $Ba_{0.6}Sr_{0.4}TiO_3$ thin film showed the lowest value of 5.13 10-7 at 5 V. The figure of merit (FOM) reached a maximum value of 32.42 at a 10 mol% Bi doped $Ba_{0.6}Sr_{0.4}TiO_3$ thin films. The dielectric constant, loss factor, and tunability of the 10 mol% Bi doped $BBa_{0.6}Sr_{0.4}TiO_3$ thin films were 333,0.0095, and 31.1%, respectively.

  • PDF

Microstructure and Ferroelectric Properties of Sol-gel Derived $PbTiO_3$ Interlayered PZT Thin Films (졸-겔법으로 제조한 $PbTiO_3$ Interlayered PZT 박막의 미세구조와 강유전 특성)

  • 임동길;최세영;정형진;오영제
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1408-1416
    • /
    • 1995
  • Microstructure and ferroelectric properties of sol-gel derived PZT(52/48) and PT interlayered PZT(52/48) thin films on Pt/Ti/SiO2/Si substrates were investigated. Films were fabricated using Acetylacetone chelated PT and PZT(52/48) sols. PZT(52/48) thin films annealed at $700^{\circ}C$ for 20 min showed the rosette structure with the size of 1.2~1.6${\mu}{\textrm}{m}$ and the pyrochlore phse was contained. PT interlayered PZT thin films, which is inserted by PbTiO3 thin layer with the thickness of 130 $\AA$ between PZT thin film and electrode, consisted of a single perovskite phase after annealing above 55$0^{\circ}C$. They exhibited the uniform and columnar grains of 0.1~0.16${\mu}{\textrm}{m}$, which are applicable for microelectronic device including non-volatile memory. Typical P-E hysteresis loops could be obtained from PT interlayered PZT thin film at as low as the annealing temperature of 50$0^{\circ}C$. Ferroelectric properties of PT interlayered PZT thin films were improved as increasing annealing temperature up to $700^{\circ}C$, and then deteriorated at 75$0^{\circ}C$. PZT(52/48) and PT interlayered PZT(52/48) thin film annealed at $700^{\circ}C$ for 20 min displayed Ps=38.8$\mu$C/$\textrm{cm}^2$, Pr=10.0$\mu$C/$\textrm{cm}^2$, Ec=65.3 kV/cm and Ps=28.5$\mu$C/$\textrm{cm}^2$, Pr=9.8$\mu$C/$\textrm{cm}^2$, Ec=76.1 kV/cm, respectively.

  • PDF