• 제목/요약/키워드: $V_{Zn}$

검색결과 1,755건 처리시간 0.028초

중첩전압(직류 +60Hz 교류)에서 18kV 배전용 피뢰기의 전기적 특성 (The electrical properties of in 18kV ZnO surge arrestor with mixed direct and 60Hz Alternating Voltage)

  • 이복희;이승주;이수봉;정동철;백영환
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.291-294
    • /
    • 2007
  • This paper preserts the characteristics of leakage currents flowing through 18 kV zinc oxide (ZnO) surge arrester under the mixed DC and AC voltages. The I-V curves of ZnO surge arrester were measured as a function of the voltage ratio K The I-V curves under the mixed DC and AC voltages lay between the pure DC and AC characteristics, and the cross-over phenomenon in I-V curves was observed at the low current region As a result, the increase of DC component to mixed voltages causes the increase of resistive component of total leakage current th ZnO surge arrester.

  • PDF

V2O5 도핑된 NiCuZn 페라이트로 제조된 칩인덕터에서의 Ag/cu 석출 (Ag and Cu Precipitation in Multi-Layer Chip Inductors Prepared with V2O5 Doped NiCuZn Ferrites)

  • 제해준;김병국
    • 한국재료학회지
    • /
    • 제13권8호
    • /
    • pp.503-508
    • /
    • 2003
  • The purpose of this study is to investigate the effect of $V_2$$O_{5}$ addition on the Ag and Cu precipitation in the NiCuZn ferrite layers of 7.7${\times}$4.5${\times}$1.0 mm sized multi-layer chip inductors prepared by the screen printing method using 0∼0.5 wt% $V_2$$O_{5}$ -doped ferrite pastes. With increasing the $V_2$$O_{5}$ content and sintering temperature, Ag and Cu oxide coprecipitated more and more at the polished surface of ferrite layers during re-annealing at $840^{\circ}C$. It was thought that during the sintering process, V dissolved in the NiCuZn ferrite lattice and the Ag-Cu liquid phase of low melting point was formed in the ferrite layers due to the Cu segregation from the ferrite lattice and Ag diffusion from the internal electrode. During re-annealing at $840^{\circ}C$, the Ag-Cu liquid phase came out the polished surface of ferrite layers, and was decomposed into the isolated Ag particles and the Cu oxide phase during the cooling process.

Fabrication of SnO2/Zn Core-shell Nanowires and Photoluminescence Properties

  • Kong, Myung Ho;Kwon, Yong Jung;Cho, Hong Yeon;Kim, Hyoun Woo
    • Applied Science and Convergence Technology
    • /
    • 제23권5호
    • /
    • pp.301-307
    • /
    • 2014
  • We have fabricated $SnO_2$/Zn core-shell nanowires by employing a sputtering technique with a Zn target. Scanning electron microscopy indicated that the surface of the nanowires became rougher by the coating. X-ray diffraction of the coated nanowires exhibited the hexagonal Zn diffraction peaks. TEM image of coated structures showed that shell layer was mainly comprised of hexagonal Zn phase. EDX spectra suggested that the shell layer consisted of Zn elements. The photoluminescence spectrum of the coated nanowires in conjunction with Gaussian fitting analysis revealed that the emission was disconvoluted with three Gaussian functions, which are centered at 2.1 eV in the yellow region, 2.4 eV in the green region, and 3.3 eV in the ultraviolet region. We speculated the possible mechanisms of these emission peaks.

펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 특성 (Growth and photocurrent properties for ZnO Thin Film by Pulsed Laser Deposition)

  • 홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.74-75
    • /
    • 2005
  • ZnO epilayer were synthesized by the pulesd laser deposition(PLD) process on $Al_2O_3$ substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193 nm) excimer laser. The epilayers of ZnO were achieved on sapphire ($Al_2O_3$) substrate at a temperature of $400^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence. The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are $8.27{\times}10^{16}cm^{-3}$ and $299cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 3.3973 eV - ($2.69{\times}10^{-4}$ eV/K)$T_2$/(T + 463 K). The crystal field and the spin-orbit splitting energies for the valence band of the ZnO have been estimated to be 0.0041 eV and 0.0399 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the $\triangle$so definitely exists in the $\ulcorner_6$ states of the valence band of the ZnO. The three photocurrent peaks observed at 10K are ascribed to the $A_1-$, $B_1-$, and $C_1$-exciton peaks for n = 1.

  • PDF

펄스 레이저 증착(PLD)법에 의한 ZnO 박막 성장과 가전자대 갈라짐에 대한 광전류 연구 (Growth of ZnO thin film by pulsed laser deposition and photocurrent study on the splitting of valance band)

  • 홍광준
    • 센서학회지
    • /
    • 제14권3호
    • /
    • pp.160-168
    • /
    • 2005
  • ZnO epilayer were synthesized by the pulesd laser deposition(PLD) process on $Al_{2}O_{3}$ substrate after irradiating the surface of the ZnO sintered pellet by the ArF(193 nm) excimer laser. The epilayers of ZnO were achieved on sapphire ($Al_{2}O_{3}$) substrate at a temperature of $400^{\circ}C$. The crystalline structure of epilayer was investigated by the photoluminescence. The carrier density and mobility of ZnO epilayer measured with Hall effect by van der Pauw method are $8.27{\times}1016cm^{-3}$ and $299cm^{2}/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the ZnO obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)$=3.3973 eV-($2.69{\times}10^{-4}$ eV/K)$T^{2}$/(T+463K). The crystal field and the spin-orbit splitting energies for the valence band of the ZnO have been estimated to be 0.0041 eV and 0.0399 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_{6}$ states of the valence band of the ZnO. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-$, and $C_{1}-$exciton peaks for n = 1.

Zn0.95Mn0.05의 제조 및 광화학적 특성 (Preparation and Photochemical Properties of Zn0.95Mn0.05)

  • 정동운
    • 대한화학회지
    • /
    • 제53권5호
    • /
    • pp.560-564
    • /
    • 2009
  • 용액침전법에 의해 ZnO 및 $Zn_{0.95}Mn_{0.05}O$를 제조하였다. Mn이 5% 치환된 ZnO 시료는 순수한 ZnO의 띠 간격인 3.37 eV (380 nm 흡광)로부터 1.50 eV (800 nm 흡광)까지 띠 간격이 줄어들게 되어 자외선 영역 뿐 아니라 가시광선 전체 영역에서도 흡광이 발생하였다. 가시광선에서의 광촉매 활성에서도 $Zn_{0.95}Mn_{0.05}O$ 시료는 P-25보다도 더 높은 활성도를 나타냈다.

V-I Curves of p-ZnO:Al/n-ZnO:Al Junction Fabricated by RF Magnetron Sputtering

  • Jin, Hu-Jie;Jeong, Yun-Hwan;Park, Choon-Bae
    • 한국전기전자재료학회논문지
    • /
    • 제21권6호
    • /
    • pp.575-579
    • /
    • 2008
  • Al-doped p-type ZnO films were fabricated on n-Si (100) and homo-buffer layers in pure oxygen at $450^{\circ}C$ of by RF magnetron sputtering. Target was ZnO ceramic mixed with 2 wt% $Al_2O_3$. XRD spectra show that the Al-doped ZnO thin films have ZnO crystal structure and homo-buffer layers are beneficial to Al-doped ZnO films to grow along c-axis. Hall Effect experiments with Van der Pauw configuration show that p-type carrier concentrations are ranged from $1.66{\times}10^{16}$ to $4.04{\times}10^{18}\;cm^{-3}$, mobilities from 0.194 to $2.3\;cm^2V^{-1}s^{-1}$ and resistivities from 7.97 to $18.4\;{\Omega}cm$. p-type sample has density of $5.40\;cm^{-3}$ which is smaller than theoretically calculated value of $5.67\;cm^{-3}$. XPS spectra show that Ols has O-O and Zn-O structures and Al2p has only Al-O structure. P-ZnO:Al/n-ZnO:Al junctions were fabricated by magnetron sputtering. V-I curves show that the p-n junctions have rectifying characteristics.

Hot Wall Epitaxy (HWE)법에 의해 성장된 $ZnIn_2S_4$ 에피레이어의 점결함 연구 (Study on point defect for $ZnIn_2S_4$ epilayers grown by Hot Wall Epitaxy)

  • 홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.141-142
    • /
    • 2008
  • Single crystal $ZnIn_2S_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $ZnIn_2S_4$ source at $610^{\circ}C$. The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 2.9514eV - ($7.24\times10^{-4}$ eV/K)$T^2$/(T + 489 K). After the as-grown $ZnIn_2S_4$ single crystal thin films was annealed in Zn-, S-, and In-atmospheres, the origin of point defects of $ZnIn_2S_4$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{Zn}$, $V_s$, $Zn_{int}$, and $S_{int}$, obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $ZnIn_2S_4$ single crystal thin films to an optical p-type. Also, we confirmed that In in $ZnIn_2S_4$/GaAs did not form the native defects because In in $ZnIn_2S_4$ single crystal thin films existed in the form of stable bonds.

  • PDF

Zinc Blende 구조를 가지는 ZnSe 결정의 밴드 특성에 관한 연구 (A Study on the Band Characteristics of ZnSe Thin Film with Zinc-blende Structure)

  • 박정민;김환동;윤도영
    • 전기화학회지
    • /
    • 제14권3호
    • /
    • pp.145-151
    • /
    • 2011
  • ZnSe는 가시광선 영역에서 넓은 밴드갭을 가지고 있는 II-VI족 화합물 반도체 소자로서 레이저 다이오드, 디스플레이 그리고 태양전지와 같은 다양한 응용분야에 적용되고 있다. 본 연구에서는 전기화학적 전착방법을 이용하여 ITO 전극상에 ZnSe 박막을 합성하여, XRD와 SEM으로 ZnSe 결정의 합성과 zinc blende 구조의 형태를 관측하였고, UV 분광기를 활용하여 밴드갭을 측정한 결과 2.76 eV이었다. 또한, 분자동역학에서 활용되는 밀도범함수 이론 (DFT, Density Functional Theory)을 도입하여 ZnSe 결정에 대한 밴드 구조의 해석을 수행하였다. Zinc blende구조를 갖는 ZnSe 결정에 대하여 LDA (Local Density Approximation), PBE (Perdew Burke Ernzerhof), 그리고 B3LYP (Becke, 3-parameter, Lee-Yang-Parr) 범함수를 이용하여 밴드구조와 상태밀도 (Density of State)를 모사하였다. 각각의 경우에 대해 에너지 밴드갭을 구한 결과, B3LYP 범함수로 해석한 경우에 실험치와 근사치인 2.65 eV의 밴드갭을 보여주었다.

Hot Wall Epitaxy (HWE)법에 의한 ZnIn2S4 단결정 박막 성장과 열처리 효과 (Growth and Effect of Thermal Annealing for ZnIn2S4 Single Crystal Thin Film by Hot Wall Epitaxy)

  • 박창선;홍광준
    • 한국재료학회지
    • /
    • 제18권6호
    • /
    • pp.318-325
    • /
    • 2008
  • Single crystal $ZnIn_2S_4$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $450^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $ZnIn_2S_4$ source at $610^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence (PL) and double crystal X-ray rocking curve (DCRC). The temperature dependence of the energy band gap of the $ZnIn_2S_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.9514\;eV-(7.24{\times}10^{-4}\;eV/K)T^2/(T+489\;K)$. After the as-grown $ZnIn_2S_4$ single crystal thin films were annealed in Zn-, S-, and In-atmospheres, the origin of point defects of $ZnIn_2S_4$ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of $V_{Zn}$, $V_S$, $Zn_{int}$, and $S_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the S-atmosphere converted $ZnIn_2S_4$ single crystal thin films to an optical p-type. Also, we confirmed that In in $ZnIn_2S_4$/GaAs did not form the native defects because In in $ZnIn_2S_4$ single crystal thin films existed in the form of stable bonds.