• Title/Summary/Keyword: $UV/TiO_2$ process

Search Result 197, Processing Time 0.023 seconds

Preparation of nanocrystalline $TiO_2$ photocatalyst films by using a titanium naphthenate (티타늄 나프테네이트를 이용한 나노결정질 $TiO_2$ 광촉매 박막의 제조)

  • 이선옥;김상복;윤연흠;강보안;황규석;오정선;양순호;김병훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.5
    • /
    • pp.240-246
    • /
    • 2002
  • $TiO_2$ films on soda-lime-silica glasses were prepared by spin coating-pyrolysis process using titanium naphthenate as a starting material. As-deposited films were pyrolyzed at $500^{\circ}C$ for 10 min in air and annealed at 500, 550 and $600^{\circ}C$ for 30 min in air. Crystallinity of the film was investigated by X-ray diffraction analysis. A field emission-scanning electron microscope and an atomic force microscope were used for characterizing the surface morphology and the surface roughness of the film. After annealing at 550 and $600^{\circ}C$, the X-ray diffraction patterns consist of only anatase peak. Films annealed at 500 and $550^{\circ}C$ exhibited flat surfaces. While with the increase in annealing temperature to $600^{\circ}C$, the $TiO_2$ film showed abnormal growth of three-dimensional needle-shaped grains. For all samples, high transmittance, above 90 % at 500 nm, was obtained at visible range. To investigate photocatalytic properties, IR absorbance associated with the C-H stretching vibrations of a thin solution-cast film of stearic acid under 365 nm (2.4 mW/$\textrm{cm}^2$) UV irradiation was estimated.

The Effect of $N_2O$ treatment and Cap Oxide in the PECVD $SiO_xN_y$ Process for Anti-reflective Coating (ARC를 위한 PECVD $SiO_xN_y$ 공정에서 $N_2O$ 처리 및 cap 산화막의 영향)

  • Kim, Sang-Yong;Seo, Yong-Jin;Kim, Chang-Il;Chung, Hun-Sang;Lee, Woo-Sun;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.39-42
    • /
    • 2000
  • As gate dimensions continue to shrink below $0.2{\mu}m$, improving CD (Critical Dimension) control has become a major challenge during CMOS process development. Anti-Reflective Coatings are widely used to overcome high substrate reflectivity at Deep UV wavelengths by canceling out these reflections. In this study, we have investigated Batchtype system for PECVO SiOxNy as Anti-Reflective Coatings. The Singletype system was baseline and Batchtype system was new process. The test structure of Singletype is SiON $250{\AA}$ + Cap Oxide $50{\AA}$ and Batchtype is SiON $250{\AA}$ + Cap Oxide $50{\AA}$ or N2O plasma treatment. Inorganic chemical vapor deposition SiOxNy layer has been qualified for bottom ARC on Poly+WSix layer, But, this test was practiced on the actual device structure of TiN/Al-Cu/TiN/Ti stacks. A former day, in Batchtype chamber thin oxide thickness control was difficult. In this test, Batchtype system is consist of six deposition station, and demanded 6th station plasma treatment kits for N2O treatment or Cap Oxide after SiON $250{\AA}$. Good reflectivity can be obtained by Cap Oxide rather than N2O plasma treatment and both system of PECVD SiOxNy ARC have good electrical properties.

  • PDF

Fabrication of Two-dimensional Photonic Crystal by Roll-to-Roll Nanoreplication (롤투롤 나노 복제 공정을 이용한 이차원 광결정 소자의 제작)

  • Kim, Young-Kyu;Byeon, Euihyeon;Jang, Ho-Young;Kim, Seok-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.16-22
    • /
    • 2013
  • A two-dimensional photonic crystal structure was investigated using a roll-to-roll nanoreplication and physical vapor deposition processes for the inexpensive enhanced fluorescence substrate which is not sensitive to the polarization directions of excitation light source. An 8 inch silicon master having nano dot array with a diameter of 200 nm, a height of 100 nm and a pitch of 400 nm was prepared by KrF laser scanning lithography and reactive ion etching processes. A flexible polymer mold was fabricated by flat type UV replication process and a deposition of 10 nm nickel layer as an anti-adhesion layer. A roll mold was prepared by warping the flexible polymer mold on an aluminum roll base and a roll-to-roll UV replication process was carried out using the roll mold. After the deposition of ~ 100 nm $TiO_2$ layer on the replicated nano dot array, a 2 dimensional photonic crystal structure was realized with a resonance wavelength of 635 nm for both p- and s-polarized light sources.

Synthesis of TiO2 Fine Powder by Sol-Gel Process and Reaction Mechanism(II) : Hydrolysis of Titanium n-Propoxide (졸-겔법에 의한 TiO2미분말 합성과 반응메카니즘(II): Titanium n-propoxide의 가수분해)

  • Myung, Jung-Jae;Park, Jin-koo;Chung, Yong-Sun;Kyong, Jin-Bum;Kim, Ho-Kun
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.777-783
    • /
    • 1997
  • $TiO_2$ powders were synthesized via hydrolysis reaction of titanium n-propoxide in n-propanol solvent and the reaction rates were studied by use of UV-vis spectroscopic method. Concentration of water, reaction temperature, reaction time and acid-base effects of the solution were investigated to determine the optimum conditions for $TiO_2$ powder synthesis. The reaction were controlled to proceed to pseudo-first orders reaction in the presence of excess water in n-propanol solvent. The rate constants which varied with temperature and concentration of water were calculated by Guggenheim method. Reaction using $D_2O$ was also carried out to determine the catalytic character of water. $TiO_2$ powders were synthesized only in the neutral and basic solution and those were almost spheric forms having average particle size of $0.4-0.7{\mu}m$ diameter. Particle size decreased with increasing concentration of water and reaction temperature, however, increased with increasing reaction time. Associative $S_N2$ mechanism for the hydrolysis was proposed from the data of n-value in the transition state and thermodynamic parameter. $D_2O$ solvent isotope effect showed that $H_2O$ molecules reacted as nucleophilic catalysis.

  • PDF

The Manufacture of Absorbents and Removal Characteristics of VOCs by Essential Oil and Photocatalyst (식물정유와 광촉매를 이용한 흡수제 제조 및 VOCs 제거특성에 관한 연구)

  • Jeong, Hae-Eun;Yang, Kyeong-Soon;Kang, Min-Kyoung;Cho, Joon-Hyung;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.54-63
    • /
    • 2017
  • Volatile organic compounds (VOCs) are widely used in both industrial and domestic activities. VOCs are one of the most unpleasant, frequently complaint-rousing factors of pollution around the world. It is now necessary to research and develop an alternative technology that could overcome the problems of the existing odor-control and VOC-eliminating techniques. In this study, essential oil and photocatalytic process was applied in the removal of benzene and toluene, typical VOCs in petrochemistry plant. therefore, this study conducted experiments on the selection of appropriate essential oil, photodegradation, hydroxyl radical generation capacity. The removal efficiency and reaction rate were performed to selecte the type and concentration of essential oil. As a result, removal efficiency of Hinoki Cypress oil was approximately 70% and reaction rate of Hinoki Cypress was high. The results of photolysis experiment, photocatalytic oxidation process showed that the decomposition efficiency of VOCs increased considerably with increasing UV lamp power. In addition, the conversion of VOCs was increased up to $0.1gL^{-1}$ photocatalysts. The hydroxyl radicals measure was performed to determine the ability to generate hydroxyl radicals. The analytical result showed that high $TiO_2$ concentration and lamp power was produced many hydroxyl radical. Experiments of the removal efficiency and reaction rate were performed using essential oil and photooxidation. As a result, the removal efficiency showed that the removal efficiency was increased high temperature and reaction time. The activation energy was calculated from the reaction rate equation at various temperature condition. Activation energy was approximately $18kJmol^{-1}$.

Photochemical Conversion of NOX in Atmosphere by Photocatalyst Coated Mortar (광촉매 코팅한 모르타르를 이용한 대기 중 NOX의 광화학적 변환)

  • Hyeon Jin;Kyong Ku Yun;Hajin Choi;Kyo-Seon Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.240-246
    • /
    • 2023
  • This study was performed to convert NOx in atmosphere by photochemical reaction utilizing the eco-friendly solar energy. The mortar specimen coated with photocatalyst was fabricated and the photochemical conversion efficiency of NOx was analyzed. The photocatalyst coated concrete was fabricated by first adding TiO2 photocatalyst on the bottom of mold first and next adding cement mortar and, then, curing the concrete mortar. The grease was sprayed on the bottom of mold in advance so that the concrete can be demolded easily after curing. The conversion efficiencies of NOx by photochemical reactions were investigated systematically by changing the process variable conditions of amount of TiO2 coating, UV-A light intensity, total gas flow rate, relative humidity and initial NOx concentration. It was confirmed that the photocatalyst coated concrete fabricated in this study could convert NOx successfully for various process conditions in atmosphere. In future, we believe this research result can be utilized as basic data to design the infrastructure of building, tunnel and road for controlling efficiently the air pollutants such as NOx, SOx, and VOCs.

Visible Light-Driven $CuInS_2-TiO_2$ Nanotube Composite Photoelectrodes with Heterojunction Structureusing Pulsed-Electrochemical Deposition Process (Pulse 전위를 적용한 전기화학적 증착 공정으로 제조된 가시광 활성 이종접합 $CuInS_2-TiO_2$ Nanotube 화합물 광전극)

  • Yun, Jung-Ho;Amal, Rose;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.49-56
    • /
    • 2013
  • Excellent electron transport properties with enhanced light scattering ability for light harvesting have made well-ordered one dimensional $TiO_2$ nanotube(TNT) arrays an alternative candidate over $TiO_2$ nanoparticles in the area of solar energy conversion applications. The principal drawback of TNT arrays being activated only by UV light has been addressed by coupling the TNT with secondary materials which are visible light-triggered. As well as extending the absorption region of sunlight, the introduction of these foreign components is also found to influence the charge separation and electron lifetime of TNT. In this study, a novel method to fabricate the TNT-based composite photoelectrodes employing visible responsive $CuInS_2$ (CIS) nanoparticles is presented. The developed method is a square wave pulse-assisted electrochemical deposition approach to wrap the inner and outer walls of a TNT array with CIS nanoparticles. Instead of coating as a dense compact layer of CIS by a conventional non-pulsed-electrochemical deposition method, the nanoparticles pack relatively loosely to form a rough surface which increases the surface area of the composite and results in a higher degree of light scattering within the tubular channels and hence a greater chance of absorption. The excellence coverage of CIS on the tubular $TiO_2$ allows the construction of an effective heterojunction that exhibits enhanced photoelectrochemical performance.

Physical Properties of UV curable coating on plastic (플라스틱용 자외선경화형 도료의 물성연구)

  • 김일재;문명준
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.16 no.3
    • /
    • pp.61-80
    • /
    • 1998
  • To investigate in influence of photosensitizer used with benzophenone(BP) in the curing rate and physical properties of UV curable hard coating on plastic, we prepared UV curable clear and pigmented coatings with DEA, DMA, NPM and TEA as photosensitizer, respectively. The curing rate calculated from the decrease of the absorbance of acrylic double bond measured by FT-IR spectroscopy increased s follows; DEA>DMA>NPM>TEA. this order could be explained by the reactivity of diethylamino group of DEA and the ease of formation of activated complex between BP and photosensitizer during the curing process. In UV curable pigmented coatings, the order of curing rate increased as follows; DEA>DMA>TEA>NPM. It was found that the curing rate of the pigmented coating can be increased by light scattering of TiO$_2$. The hardness of coating film cured by photosensitization of DEA and DMA is higher than other photosensitizers due to the crosslinking reaction of DEA and DMA radical bound to polymer backbone.

  • PDF

Purification of BTEX at Indoor Air Levels Using Carbon and Nitrogen Co-Doped Titania under Different Conditions

  • Jo, Wan-Kuen;Kang, Hyun-Jung
    • Journal of Environmental Science International
    • /
    • v.21 no.11
    • /
    • pp.1321-1331
    • /
    • 2012
  • To date, carbon and nitrogen co-doped photocatalysts (CN-$TiO_2$) for environmental application focused mainly on the aqueous phase to investigate the decomposition of water pollutants. Accordingly, the present study explored the photocatalytic performance of CN-$TiO_2$ photocatalysts for the purification of indoor-level gas-phase aromatic species under different operational conditions. The characteristics of prepared photocatalysts were investigated using X-ray diffraction, scanning emission microscope, diffuse reflectance UV-VIS-NIR analysis, and Fourier transform infrared (FTIR) analysis. In most cases, the decomposition efficiency for the target compounds exhibited a decreasing trend as input concentration (IC) increased. Specifically, the average decomposition efficiencies for benzene, toluene, ethyl benzene, and xylene (BTEX) over a 3-h process decreased from 29% to close to zero, 80 to 5%, 95 to 19%, and 99 to 32%, respectively, as the IC increased from 0.1 to 2.0 ppm. The decomposition efficiencies obtained from the CN-$TiO_2$ photocatalytic system were higher than those of the $TiO_2$ system. As relative humidity (RH) increased from 20 to 95%, the decomposition efficiencies for BTEX decreased from 39 to 5%, 97 to 59%, 100 to 87%, and 100 to 92%, respectively. In addition, as the stream flow rates (SFRs) decreased from 3.0 to 1.0 L $min^{-1}$, the average efficiencies for BTEX increased from 0 to 58%, 63 to 100%, 69 to 100%, and 68 to 100%, respectively. Taken together, these findings suggest that three (IC, RH, and SFR) should be considered for better BTEX decomposition efficiencies when applying CN-$TiO_2$ photocatalytic technology to purification of indoor air BTEX.

The method for total organic carbon analysis employing TiO2 photocatalyst (이산화티타늄 광촉매를 이용한 총유기탄소 분석방법)

  • Park, Buem Keun;Kim, Sung Mi;Lee, Young-Jin;Paik, Jong-Hoo;Shin, Jeong Hee
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.320-325
    • /
    • 2021
  • Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) methods are conventional analytical methods to analyze water quality. Both of these methods are technically indirect measurement methods, require complicated preconditions, and are time-consuming. On the other hand, the total organic carbon (TOC) method is a direct and fast measurement method which is more intuitive and accurate than the BOD and COD methods. However, general TOC analysis methods involve complicated processes and high power consumption owing to the process of phase transition from liquid to gas by a high-temperature heater. Furthermore, periodic consumables are also required for the removal of inorganic carbon (IC). Titanium dioxide (TiO2) is one of the most suitable photocatalysts for simple processes. Its usage involves low power consumption because it only reacts with the organic carbon (OC) without the requirement of any other reagents and extra processes. We investigated a TiO2 photocatalyst-based TOC analysis for simple and affordable products. TiO2-coated fiber substrate maintained under carbon included water was exposed to ultraviolet (UV) radiation of wavelength 365 nm. This method is suitable for the real-time monitoring of water pollution because of its fast reaction time. Its linear property is also sufficient to match the real value.