• Title/Summary/Keyword: $UV/H_2O_2$ process

Search Result 195, Processing Time 0.031 seconds

Hydrogen Production from Photocatalytic Splitting of Water/Methanol Solution over a Mixture of P25-TiO2 and AgxO (산화은/이산화티타늄 혼합물을 광촉매로 활용한 물/메탄올 분해 수소제조)

  • Kim, Kang Min;Jeong, Kyung Mi;Park, No-Kuk;Lee, Tae Jin;Kang, Misook
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.271-277
    • /
    • 2015
  • A photocatalyst which mixed by the commercialized P25-TiO2 and a synthesized AgxO was used in an appropriate weight ratio to effectively produce hydrogen gas in this study. The AgxOs were synthesized with the conventional sol-gel method, and tetramethylammonium hydroxides were added at the synthesis process in order to stabilize the solutions, and then the solutions were heat-treated at the temperatures of -5, 25, and 50 ℃, resulted to obtain the three types of silver oxides. Physicochemical properties of the synthesized AgxOs were identified through X-ray diffraction analysis (XRD), scanning emission microscopy (SEM), ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). In the photolysis results of water/methanol (weight ratio 1:1) solution, the mixture of P25-TiO2/AgxO exhibited a significantly higher hydrogen gases evolution, compared to that of pure P25-TiO2. Additionally, the addition of H2O2 as an supplement oxidant and in AgxO synthesized at 50 ℃ improved the hydrogen production efficiency. In particular, the emitted hydrogen gases reached to 13,000 μmol during 8 hours when a mixed catalyst, AgxO of 0.1 g and P25-TiO2 of 0.9 g, were used.

AlInGaN - based multiple quantum well laser diodes for Blu-ray Disc application

  • O. H. Nam;K. H. Ha;J. S. Kwak;Lee, S.N.;Park, K.K.;T. H. Chang;S. H. Chae;Lee, W.S.;Y. J. Sung;Paek H.S.;Chae J.H.;Sakong T.;Kim, Y.;Park, Y.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.20-20
    • /
    • 2003
  • We developed 30 ㎽-AlInGaN based violet laser diodes. The fabrication procedures of the laser diodes are described as follows. Firstly, GaN layers having very low defect density were grown on sapphire substrates by lateral epitaxial overgrowth method. The typical dislocation density was about 1-3$\times$10$^{6}$ /$\textrm{cm}^2$ at the wing region. Secondly, AlInGaN laser structures were grown on LEO-GaN/sapphire substrates by MOCVD. UV activation method, instead of conventional annealing, was conducted to achieve good p-type conduction. Thirdly, ridge stripe laser structures were fabricated. The cavity mirrors were formed by cleaving method. Three pairs of SiO$_2$ and TiO$_2$ layers were deposited on the rear facet for mirror coating. Lastly, laser diode chips were mounted on AlN submount wafers by epi-down bonding method. The lifetime of the laser diodes was over 10,000 hrs at room temperature under automatic power controlled condition. We expect the performance of the LDs to be improved by the optimization of the growth and fabrication process. The detailed characteristics and important issues of the laser diodes will be discussed at the conference.

  • PDF

Isolation of the Regulator Gene Responsible for Overproduction of Catalase A in $H_2O$$_2$-resistant Mutant of Streptomyces coelicolor

  • Hahn, Ji-Sook;Oh, So-Young;Keith F. Chater;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.18-23
    • /
    • 2000
  • Streptomyces coelicolor produces three kinds of catalases to cope with oxidative stress and to allow normal differentiation. Catalase A is the major vegetative catalase which functions in removing hydrogen peroxide generated during the process of aerobic metabolism. To understand the regulatory mechanism of response against oxidative stress, hydrogen peroxide-resistant mutant (HR4O) was isolated from S. coelicolor J1501 following UV mutagenesis. The mutant overproduced catalase A more than 50-fo1d compared with the wild type. The mutation locus catRI was mapped closed to the mthB2 locus by genetic crossings. An ordered cosmid library of S. coelicolor encompassing the mthB2 locus was used to isolate the regulator gene (catR) which represses catalase overproduction when introduced into HR4O. A candidate catR gene was found to encode a Fur-like protein of 138 amino acids (15319 Da).

  • PDF

Synthesis of Silver Nanoparticles by Microemulsion (마이크로에멀젼을 이용한 은 나노입자의 합성)

  • Yoon, In-Young;Park, Heung-Jo;Kwack, Kwang-Soo;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.118-124
    • /
    • 2003
  • Silver nanoparticles was synthesized by the method of W/O microemulsions with AOT (bis(2-ethylhexyl) sodium sulfosuccinate). The nucleation particle growth and aggregation was controlled by the droplet exchange process. The intermicellar exchange reaction is varied by changing the AOT and the $H_2O$ concentration. The synthesized W/O microemulsions was found to give the nanoparticles, which was confirmed by SEM, TEM, particle-size-analyzer, and UV-spectrometer. The most stable particles was obtained at 0.056 mole AOT solution, and the particle size distribution was found in the range from 27 to 31 nm. The mean particle size was reduced by adding Tween 20 significantly, and distribution was found from 14 to 16 nm. And, It's size was reduced by cosurfactants as toluene and benzyl alcohol. In case of toluene and benzyl alcohol, the range of particle size was found 7${\sim}$11 nm and 8${\sim}$12 nm.

Diameter-Controllable Synthesis and Enhanced Photocatalytic Activity of Electrospun ZnO Nanofibers (전기방사를 이용하여 제조된 산화아연 나노섬유의 직경제어 및 광촉매 특성)

  • Ji, Myeong-Jun;Yoo, Jaehyun;Lee, Young-In
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.79-86
    • /
    • 2019
  • A heterogeneous photocatalytic system is attracting much interest for water and air purification because of its reusability and economical advantage. Electrospun nanofibers are also receiving immense attention for efficient photocatalysts due to their ultra-high specific surface areas and aspect ratios. In this study, ZnO nanofibers with average diameters of 71, 151 and 168 nm are successfully synthesized by facile electrospinning and a subsequent calcination process at $500^{\circ}C$ for 3 h. Their crystal structures, morphology features and optical properties are systematically characterized by X-ray diffraction, scanning electron microscopy, UV-Vis and photoluminescence spectroscopies. The photocatalytic activities of the ZnO nanofibers are evaluated by the photodegradation of a rhodamine B aqueous solution. The results reveal that the diameter of the nanofiber, controlled by changing the polymer content in the precursor solution, plays an important role in the photocatalytic activities of the synthesized ZnO nanofibers.

The Preparation and Properties of Petroleum Sulfonate Dispersant (열분해 잔유를 원료로 한 분산제의 제조 및 특성)

  • Choi, Sang-Won;Kim, Eun-Young;Chang, Woo-Seok;Kim, Viktor;Moon, Jang-Soo
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.490-494
    • /
    • 2007
  • Dispersants were prepared from petroleum pyrolysis residual oil (PPRO) through sulfonation. Without employing a conventional polynaphthalene sulfonate formaldehyde condensate (PNS) process, the dispersants (NPS) were synthesized by a simpler process only in 2 h. The chemical structure of new dispersant, which has various naphthalene derivative groups, was similar to PNS conformed by UV-visible spectroscopy curves. The new dispersants demonstrated high dispersing ability in inorganic suspension ; cement, $Fe_2O_3$, and $CaCO_3$.

FIR Observations and Simple LVG Modeling Results of L1448-MM

  • Lee, Jin-Hee;Lee, Jeong-Eun;Lee, Seok-Ho;DIGIT Team, DIGIT Team
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.82.2-82.2
    • /
    • 2012
  • We present Herschel-PACS observations of L1448-MM, a Class 0 protostar with a prominent outflow, part of the DIGIT Key Program (PI: N. Evans). We detect numerous emission lines including CO and $H_2O$ rotational transitions, OH transitions, and [OI] forbidden transitions at wavelengths from 55 to 210 ${\mu}m$. The $H_2O$, [OI], mid-J CO (J < 23), and OH emission distributes along the outflow direction although high-J CO and other OH emission peaks at the central spatial pixel. According to our simple excitation analysis, CO seems to have two temperature components of warm and hot, which might be attributed to the PDR and shock, respectively. After exploring a wide range of physical conditions with a non-LTE LVG code, RADEX, we found that either shock alone or the combination of PDR and shock can explain the observations. The relative fraction of observed line luminosities suggest that L1448-MM is shielded from the UV radiation because $H_2O$ and CO are the dominant coolants rather than OH and [OI]. In addition, our observed fluxes match better with C-shock models rather than J-shocks. The non-LTE LVG model supports that the IR pumping process is important for OH transitions because the OH line ratios are fitted much better when the dust thermal continuum is included.

  • PDF

A study on the removal characteristics of bisphenol in water by coagulation (응집에 의한 Bisphenol A의 제거특성)

  • Park, Jihyun;Shin, Daeyewn;Park, Sunku
    • Analytical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.181-187
    • /
    • 2006
  • This study was carried to survey the removal characteristics of BPA using coagulation process by PAC and PAHCS. BPA removal for PAC and PAHCS was 20.4 with 8.7 Al mg/L and 6.8 Al mg/L, respectively. Removal of BPA was lower than $UV_{254}$ and DOC but removal characteristics were similar. BPA removal for PAC and PAHCS was most high in pH 6.5 and 7.0 respectively. The time for removal by mixing time was 40 min in PAC and 30 min in PAHCS. When powdered activated carbon 50 mg/L was added in coagulation process, a high remove of BPA (61%) was noticed. Specially BPA was highly increase powdered activated carbon 5 mg/L alone. These results will be appliable in the conventional water treatment plants for improvement of water treatment system.

Characterization of TMA-A zeolite incorporated by ZnO nanocrystals (ZnO 나노결정을 담지한 TMA-A 제올라이트의 특성분석)

  • Lee, Seok Ju;Lim, Chang Sung;Kim, Ik Jin
    • Analytical Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.58-63
    • /
    • 2008
  • Nano-sized ZnO crystals were successfully incorporated using ion exchange method in TMA-A zeolite synthesized by the hydrothermal method. The optimal composition for the synthesis of TMA-A zeolite was resulted in a solution of $Al(i-pro)_3$ : 2.2 TEOS : 2.4 TMAOH : 0.3 NaOH : 200 $H_2O$. 0.3 g of TMA-A zeolite and 5 mol of $ZnCl_2$ solution were employed for the preparation of ZnO incorporated TMA-A zeolite. The crystallization process of ZnO incorporated TMA-A zeolite was analyzed by X-ray diffraction (XRD). The incorporated nano-sized ZnO crystals and the crystallinity of TMA-A zeolite were evaluated by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The size of the incorporated nano-sized ZnO crystals was 3~5 nm, while the TMA-A zeolite was 60~100 nm. The bonding structure and absorption of the ZnO incorporated TMA-A zeolite were compared with the ZnO and TMA-A zeolite by the FT-IR analysis. Subsequentlly, the ZnO incorporated TMA-A zeolite showed the photoluminescent characteristics on the wavelengths of 330~260 nm and 260~230 nm by measurement of UV spectrophotometer.

Pressure Drop of Integrated Hybrid System and Microbe-population Distribution of Biofilter-media (통합 하이브리드시스템의 압력강하 거동 및 바이오필터 담체의 미생물 population 분포)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.116-124
    • /
    • 2022
  • In this study, waste air containing ethanol and hydrogen sulfide, was treated by an integrated hybrid system composed of two alternatively-operating UV/photocatalytic reactor-process and biofilter processes of a biofilter system having two units with an improved design (R reactor) and a conventional biofilter (L reactor). Both a pressure drop (△p) per unit process of the integrated hybrid system and a microbe-population-distribution of each biofilter process were observed. The △p of the UV/photocatalytic reactor process turned out very negligible. The △p of the L reactor was observed to increase continuously to 4.0~5.0 mmH2O (i.e., 5.0~6.25 mmH2O/m). In case of R reactor, its △p showed the one below ca. 16~20% of the △p of the L reactor. Adopting such microbes-carrying biofilter media with high porosity as waste-tire crumb media, and the improved biofilter design, contributed to △p of this study, reduced by ca. 37~50% and 40~53%, respectively, from the reported △p of conventional biofilter packed with biofilter media of the mixture (50:50) of wood chip and wood bark. In addition, the △p of R reactor in this study, reduced by ca. 80% from the reported △p of conventional biofilter packed with biofilter media of the mixture (75:25) of scoria with high porosity and compost, was mainly attributed to adopting the improved biofilter design. On the other hand, in case of L reactor, the CFU counts in its lowest column was analyzed double as much as those in any other columns. However, in case of R reactor, its CFU counts were bigger by 50% than the one of L reactor and its microbes were evenly distributed at its higher and lower columns of Rdn reactor and Rup reactor. This phenomena was attributed to an even moisture distribution of 50~55% of R reactor at its higher and lower columns. Therefore, R reactor showed superb characteristics in terms of both △p and microbe-population-distribution, compared to L reactor.