• Title/Summary/Keyword: $UO_4$

Search Result 232, Processing Time 0.025 seconds

Reprocessing of fluorination ash surrogate in the CARBOFLUOREX process

  • Boyarintsev, Alexander V.;Stepanov, Sergei I.;Chekmarev, Alexander M.;Tsivadze, Aslan Yu.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.109-114
    • /
    • 2020
  • This work presents the results of laboratory scale tests of the CARBOFLUOREX (CARBOnate FLUORide EXtraction) process - a novel technology for the recovery of U and Pu from the solid fluorides residue (fluorination ash) of Fluoride Volatility Method (FVM) reprocessing of spent nuclear fuel (SNF). To study the oxidative leaching of U from the fluorination ash (FA) by Na2CO3 or Na2CO3-H2O2 solutions followed by solvent extraction by methyltrioctylammonium carbonate in toluene and purification of U from the fission products (FPs) impurities we used a surrogate of FA consisting of UF4 or UO2F2, and FPs fluorides with stable isotopes of Ce, Zr, Sr, Ba, Cs, Fe, Cr, Ni, La, Nd, Pr, Sm. Purification factors of U from impurities at the solvent extraction refining stage reached the values of 104-105, and up to 106 upon the completion of the processing cycle. Obtained results showed a high efficiency of the CARBOFLUOREX process for recovery and separating of U from FPs contained in FA, which allows completing of the FVM cycle with recovery of U and Pu from hardly processed FA.

Production of Laser Welded Tube for Automobile Bumper Beam from 60kgf/$\textrm{mm}^2$Grade Steel Sheet (60kgf/$\textrm{mm}^2$급 자동차 범퍼빔용 레이저 용접 튜브 제조기술 및 장치연구)

  • Seo, Jung;Lee, Je-Hoon;Kim, Jong-Soo;Kim, Jung-O;Kang, Hee-Sin;Lee, Moon-Yong;Jung, Byung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.136-144
    • /
    • 2004
  • Optimal process and system to produce the laser welded tube for one body formed bumper beam are studied. The calculated size of tube is a thickness of 1.4mm, diameter of 105.4mm and length of 2000mm. The tube is shaped from a cold rolled high strength steel sheet(tensile strength: 60kgf/$\textrm{mm}^2$ grade). Two roll bending method is the optimal tube shaping process compared to UO-bending, bending on press brake, multi-step continuous roll forming and 3 roll bending methods. Weld quality monitoring and seam tracking along the butt-joint lengthwise to the tube axis are also studied. The longitudinal butt-joint is welded by the $CO_2$ laser welding system equipped with a seam tracker and plasma sensor. The constructed $CO_2$laser tube welding system can be used for the precision seam tracking and the real-time monitoring of weld quality. Finally, the obtained laser welded tube can be used for one-body formed automobile bumper beam.

The exploration of U(VI) concentration improvement in carbonate medium for alkaline reprocessing process

  • Chenxi Hou;Mingjian He;Meng Zhang;Haofan Fang;Hui He;Caishan Jiao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.419-425
    • /
    • 2024
  • The purpose of this study is to improve the concentration of U(VI) in carbonate solution reasonably, which to improve the application potential of the alkaline reprocessing processes. The dissolution behavior of U3O8 in carbonate peroxide solutions was investigated under different conditions, including pH, carbonate concentration, and solid-liquid ratio. The results showed that the dissolution rate of U3O8 increased with the increase of pH from 8 to 11 in the mixed carbonate solution containing 0.5 mol/L H2O2. The role of carbonate ions in the dissolution of U3O8 was further elucidated by observing the dissolution of UO4⋅4H2O in carbonate solutions. Furthermore, the concentration of U(VI) in 3 mol/L Na2CO3 solution was successfully increased to 350 g/L under ultrasonic-assisted conditions at 60 ℃ and a solid-liquid ratio at 1/2 g/mL. Meanwhile, it is suggested that increasing the concentration of carbonate ions can improve the stability of the dissolved solution containing uranyl peroxycarbonate complex.

Uranium Enrichment Comparison of UO2 Pellet with Alpha Spectrometry and TIMS

  • Song, Ji-Yeon;Seo, Hana;Kim, Sung-Hwan;Choi, Jung-Youn
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.120-123
    • /
    • 2018
  • Background: Analysis of enrichment of $UO_2$ is important to verify the information declared by the license-holders. The redundancy methods are required to guarantee the analysis result. Korea Institute of Nuclear Nonproliferation and Control (KINAC) used to analyze it with alpha spectrometry and consign to Korea Basic Science Institute (KBSI) Thermal Ionization Mass Spectrometry (TIMS). This article evaluated the similarity of the results with two methods and derive correlation equation. It could be compared to the results measured by TIMS running by KBSI. Materials and Methods: There are not many certified materials for the uranium enrichment value. Therefore, 34 uranium pellets, which have the wide range of uranium enrichment from 0.21 to 4.69 wt%, were used for the experiments by the alpha spectrometry and the TIMS. Results and Discussion: The study shows there are the tendency of analyzed enrichment by each equipment. It shows uranium enrichment with alpha spectrometry evaluated 17% higher than that with TIMS on average. The regression equations were also derived in case the similarity between the two results with two methods is lower than predicted. Two experiments were designed to compare the effect of number of samples. The $R^2$ was 0.9977 with 34 pellets. It shows the equation is appropriate to predict the enrichment values by TIMS with that of alpha spectrometry. The $R^2$ was 0.9858 with four pellets for ten times. The $R^2$ decreased while the number of samples increased. The discrepancy between the lowest and highest enrichment seems to be one of the reason for it. Conclusion: KINAC expects the first equation with 34 samples is useful to predict the result with TIMS, the redundancy method, based on the alpha spectrometry. The extra samples are necessary to collect if the enrichment value analyzed by TIMS is lower than the value predicted with the equation. Further study would be followed related to the impact of the peak counts for each uranium isotopes, sample amount and number of experiments when TIMS established in KINAC by the end of 2018.

A Study on Adsorption Characterics of Metallic Ions by Tannin Immobilized on Chitin and Chitosan (Chitin 및 Chitosan에의 고정화 탄닌의 금속이온 흡착특성에 관한 연구)

  • Kim, Chang-Ho;Chang, Byung-Kwon;Choi, Kyu-Suk
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.204-215
    • /
    • 1993
  • Epoxy-activated chitin was synthesized by the reaction of epichlorohydrin with chitin which was isolated from waste marine sources such as crab shell. Followed by the reaction of epoxy-activated chitin with hexamethylenediamine, the aminohexyl chitin was synthesized. The aminohexyl chitin was subsequently reacted with epichlorohydrin to prepare the epoxy-activated aminohexyl chitin. Finally, the tannin-immobilized chitin (Resin I) was synthsized by the reaction of tannin solution with epoxy-activated aminohexyl chitin. Using silane coupling agent, the tannin-immobilized chitosan(Resin II) was synthesized by the reaction of $\gamma$-glycidoxypropyltrimethoxy silane with chitosan which was prepared by the deacetylation of chitin. Upon the pH variation, adsorptivities of these immobilized tannins to the metal ions such as $Cu^{+2}$, $Ni^{+2}$, $Cr^{+6}$, $Co^{+2}$, $Ca^{+2}$, $Pb^{+2}$, $Ba^{+2}$, and $UO_2{^{+2}}$ ions were determined by batch method. The adsorptivity tendencies of these immobilized tannin to the most of metallic ions were increased with pH. Furthermore, the adsorptivities of Resin(I) and Resin(II) upon the variation of pH, contact time, amount of resin and concentration of metal ion were investigated. As a result, it was found that these immobilized tannin on both chitin and chitosan showed good adsorptivities for uranyl ion.

  • PDF

EPMA Analysis of Inter-reaction Layer in Irradiated U3Si-Al Fuels (EPMA를 이용한 U3Si/Al 조사 핵연료의 반응층 분석)

  • Jung, Yang-Hong;Yoo, Byung-Ok;Kim, Hee-Moon;Park, Jong-Man;Kim, Myung-Han
    • Analytical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.355-362
    • /
    • 2004
  • Fission products and Inter reaction layer of $U_3Si-Al$ dispersion fuel, irradiated in HANARO research reactor with 121 kW/m of maximum liner power and 63 at% of average burn-up, was characterization by EPMA (Electron Probe Micro Analyzer). The fuel punching system developed by Irradiated Materials Examination Facility (IMEF) has used to make these samples for the EPMA. With this system a very small and thin specimen which is 1.57 mm in diameter and 2 mm in thickness respectively has been fabricated to protect the EPMA operator from high radioactive fuel and to mini-mize the equivalent dose rate less than 150 mSv/h. EPMA was performed to observe layers of sectional, Inter-reaction and oxide with specimens of cutting and polished. Stoichiometry in the Inter-reaction layer with $16{\mu}m$ of thickness was $U_{2.84}$ Si $Al_{14}$ with calibration of $UO_2$ and $U_{3.24}$ Si $Al_{14.1}$ with calibration of standard specimen. metallic precipitates in this layer were not observed using fission products examination.

Thickness and translucency of opaque shade composite resin for masking effect (배경 색조 차단 목적의 불투명 복합 레진의 두께와 반투명도)

  • Baek, Kyung-Won;Kim, Sung-Joon
    • The Journal of the Korean dental association
    • /
    • v.49 no.4
    • /
    • pp.203-210
    • /
    • 2011
  • The aims of this study were to evaluate the adequate thickness of opaque resins for situations such as an oral black cavity and discolored tooth structure, as well as the translucency of each opaque material at various thicknesses. Six opaque-shade composite resins (Z-350 OA3, Amelogen Universal A2O, Esthet-X A2O, Esthet-X A4O, Charmfil UO and Aelite Universal OA3) were prepared in metal molds with a hole of 8 mm in diameter and various thicknesses (0.5mm, 1.0mm, 1.5mm, 2.0mm, 2.5mm, 3.0 mm and 4.0mm). Four backgrounds (white tile, black tile, C4 shade porcelain and opaque resin itself) were used to determine the translucency parameter (between black and white backgrounds). and to mimic a black oral cavity (between black and opaque resin backgrounds) and a discolored tooth structure (between C4 and opaque resin backgrounds). Color measurements were made by a colorimeter to determine the CIELAB values of each specimen with each background and to calculate the translucency parameter and ${\Delta}E^*$ value difference among the specimens on the backgrounds. The translucency parameter and ${\Delta}E^*$ obtained between black and opaque resin backgrounds decreased in similar pattern as thickness increased. A C4 background was masked by resin thicknesses of 0.5-1.0mm, while a black background required thicknesses of 1.0-2.0mm. Adequate knowledge about differences in the optical character like translucency of the materials used is essential, together with the accumulated experience of the individual clinician.

Oxidation Behavior of U-0.75 wt% Ti Chips in Air at 250-50$0^{\circ}C$

  • Kang, Kweon-Ho;Shin, Hyun-Kyoo;Kim, Chul;Park, Young-Moo
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.193-197
    • /
    • 1996
  • A study was conducted on the oxidation behavior of U-0.75 wt% Ti chips (Depleted Uranium, DU chips) using an XRD and a thermogravimetric analyzer in the temperature range from 250 to 500$^{\circ}C$ in air. At the temperature lower than 400$^{\circ}C$, DU chips were converted to UO$_2$, U$_3$O$\_$7/, and U$_3$O$\_$8/ whereas at the temperature higher than 400$^{\circ}C$, DU chips were completely converted to U$_3$O$\_$8/, the most stable form of uranium oxide. The activation energy for the oxidation of DU chips is found, 44.9 kJ/mol and the oxidation rate in terms of weight gain (%) can be expressed as; dW/dt8.4${\times}$10$^2$e(equation omitted) wt%/min (250$\leq$T($^{\circ}C$) $\leq$ 500) where W=weight gain (%), t=time and T=temperature.

  • PDF

Effect of High Temperature Treatment and Subsequent Oxidation anil Reduction on Powder Property of Simulated Spent Fuel

  • Song, Kun-Woo;Kim, Young-Ho;Kim, Bong-Goo;Lee, Jung-Won;Kim, Han-Soo;Yang, Myung-Seung;Park, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.366-372
    • /
    • 1996
  • The simulated spent PWR fuel pellet which is corresponding to the turnup of 33,000 MWD/MTU is prepared by adding 11 fission-product elements to UO$_2$. The simulated spent fuel pellet is treated at 40$0^{\circ}C$ in air (oxidation), at 110$0^{\circ}C$ in air (high-temperature treatment), and at $600^{\circ}C$ in hydrogen (reduction). The product is treated through additional addition and reduction up to 3 cycles. Pellets are completely pulverized by the first oxidation, and the high-temperature treatment causes particle and crystallite to grow and surface to be smooth, and thus particle size significantly increases and surface area decreases. The reduction following the high-temperature treatment decreases much the particle size by means of the formation of intercrystalline cracks. The particle size decreases a little during the second oxidation and reduction cycle and then remains nearly constant during the third and fourth cycles. Surface area of pounder increases progressively with the repetition of oxidation and reduction cycles, mainly due to the formation of Surface cracks. The degradation of surface area resulting from high-temperature treatment is restored by too subsequent resulting oxidation and reduction cycles.

  • PDF

Adsorption Characteristic of U(VI), Cu(II), Dy(III) Ions Utilizing Nitrogen-Donator Synthetic Resin (질소-주게 합성수지를 이용한 U(VI), Cu(II), Dy(III) 이온들의 흡착특성)

  • Rho, Gi-Hwan;Kim, Joon-Tae;Kim, Hee-Joung
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.3 s.61
    • /
    • pp.52-60
    • /
    • 2006
  • The ion exchange resins have been synthesized from chlormethyl styrene-1,4-divinylbenzene(DVB) with 1%, 2%, and 20%-crosslinking and macrocyclic ligand of cryptand 21 by copolymerization method and the adsorption characteristics of uranium(VI), copper(II) and dysprosium(III) metallic ions have been investigated in various experimental conditions. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, equilibrium time, dielectric constant of solvent and crosslink on adsorption of metallic ions were investigated. The metal ion was showed fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in increasing order uranium$(UO^{2+}_2)\;>\;copper(Cu^{2+})\;>\;dysprosium(Dy^{3+})$ ion. The adsorption was in order of 1%, 2%, and 20% crosslink resin and adsorption of resin decreased in proportion to order of dielectric constant of solvents.