DOI QR코드

DOI QR Code

Reprocessing of fluorination ash surrogate in the CARBOFLUOREX process

  • Boyarintsev, Alexander V. (Dmitry Mendeleev University of Chemical Technology of Russia) ;
  • Stepanov, Sergei I. (Dmitry Mendeleev University of Chemical Technology of Russia) ;
  • Chekmarev, Alexander M. (Dmitry Mendeleev University of Chemical Technology of Russia) ;
  • Tsivadze, Aslan Yu. (A.N. Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences)
  • Received : 2019.04.11
  • Accepted : 2019.06.24
  • Published : 2020.01.25

Abstract

This work presents the results of laboratory scale tests of the CARBOFLUOREX (CARBOnate FLUORide EXtraction) process - a novel technology for the recovery of U and Pu from the solid fluorides residue (fluorination ash) of Fluoride Volatility Method (FVM) reprocessing of spent nuclear fuel (SNF). To study the oxidative leaching of U from the fluorination ash (FA) by Na2CO3 or Na2CO3-H2O2 solutions followed by solvent extraction by methyltrioctylammonium carbonate in toluene and purification of U from the fission products (FPs) impurities we used a surrogate of FA consisting of UF4 or UO2F2, and FPs fluorides with stable isotopes of Ce, Zr, Sr, Ba, Cs, Fe, Cr, Ni, La, Nd, Pr, Sm. Purification factors of U from impurities at the solvent extraction refining stage reached the values of 104-105, and up to 106 upon the completion of the processing cycle. Obtained results showed a high efficiency of the CARBOFLUOREX process for recovery and separating of U from FPs contained in FA, which allows completing of the FVM cycle with recovery of U and Pu from hardly processed FA.

Keywords

References

  1. V.V. Shatalov, M.B. Seregin, V.F. Kharin, L.A. Ponomarev, Gas-fluoride technology for processing spent oxide fuel, Atom. Energy 90 (3) (2001) 224-234. https://doi.org/10.1023/A:1011376412282
  2. Y. Kani, A. Sasahira, K. Hoshino, F. Kawamura, New reprocessing system for spent nuclear reactor fuel using fluoride volatility method, J. Fluorine Chem. 130 (2009) 74-82. https://doi.org/10.1016/j.jfluchem.2008.07.006
  3. V.N. Prusakov, N.M. Trotsenko, V.A. Khokhlov, E.P. Marinenko, B.P. Bolozerov, Yu.G. Degaltsev, Yu.M. Utkin, V.V. Davydov, "Dry" methods of regeneration of the irradiated nuclear fuel, in: Nuclear fuel cycle, power, technology, ecology, safety, vol 2, 2006, pp. 45-54.
  4. M.B. Seregin, A.Yu. Kuznetsov, A.A. Mikhalichenko, Gas-fluoride technology of processing of irradiated nuclear fuel, level of development and prospect of its application, in: VNIIHT - 60 Years. The Anniversary Collection of Works, LLC Leonardo-Dizayn, Moscow, Russia, 2011.
  5. O. Amano, F. Kawamura, T. Fukasawa, M. Takahashi, A. Sasahira, Y. Shibata, J. Yamashita, New reprocessing technology, FLUOREX, for LWR fuel cycle hybrid process of fluoride volatility and solvent extraction, in: NUCEF 2001 Conference, Tokaimura, Japan, October 31-November 2, 2001.
  6. S.I. Stepanov, A.M. Chekmarev, Concept of spent nuclear fuel reprocessing, Dokl. Chem. 423 (1) (2008) 276-278. https://doi.org/10.1134/S0012500808110037
  7. S.I. Stepanov, A.V. Boyarintsev, A.V. Tyuremnov, San Tun, E.G. Il'in, A.M. Chekmarev, A.Yu. Tsivadze, NMR study of U(VI) extraction from carbonate-fluoride solutions with methyltrioctylammonium fluoride, Dokl. Chem. 460 (1) (2015) 17-20. https://doi.org/10.1134/S0012500815010073
  8. Z. Szabo, W. Aas, I. Grenthe, Structure, isomerism, and ligand dynamics in dioxouranium(VI) complexes, J. Inorg. Chem. 36 (23) (1997) 5369-5375. https://doi.org/10.1021/ic9708172
  9. I.I. Chernyaev, Complex Compounds of Uranium, Daniel Davey & Co., Ink., New York, 1966.
  10. W. Runde, L.F. Brodnax, S.M. Peper, B.I. Scott, G. Jarvinen, Structure and stability of peroxo complexes of uranium and plutonium in carbonate solutions, in: Eight Actinide Conference, Actinide 2005, Manchester, United Kingdom, July 4-8, 2005.
  11. A.V. Boyarintsev, L.M. Abashev, S.I. Stepanov, V.I. Zhilov, A.M. Chekmarev, A.Yu. Tsivadze, Carbonate extraction-based refining of uranium. Separation of U(VI), Ce(IV), and Ln(III) from aqueous carbonate solutions with methyltrioctylammonium carbonate, Dokl. Chem. 473 (2) (2017) 70-73. https://doi.org/10.1134/S0012500817040024
  12. A.S. Wolf, L.M. Abashev, G.V. Kostikova, A.V. Boyarintcev, S.I. Stepanov, Extraction separation of U(VI), Pu(IV) and Am(III) from carbonate-fluoride solutions by carbonate MTOA, Achiev. Chem. Chem. Technol. 31 (10) (2017) 67-69.
  13. A.B. Yusov, A.Yu. Garnov, V.P. Shilov, N.N. Krot, Kinetics of Pu(IV) oxidation with persulfate in alkali solutions, Radiochemistry 39 (6) (1997) 521-524.
  14. R. Guillaumont, T. Fanghaenel, J. Fuger, I. Grenthe, V. Neck, D.A. Palmer, M.H. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Elsevier, Amsterdam, The Netherlands, 2003.
  15. S.I. Stepanov, A.V. Boyarintsev, M.V. Vazhenkov, B.F. Myasoedov, E.O. Nazarov, A.M. Safiulina, I.G. Tananaev, H.V. So, A.M. Chekmarev, A.Yu. Tsivadze, CARBEX Process, A new technology of reprocessing of spent nuclear fuel, Russ. J. Gen. Chem. 81 (9) (2011) 1949-1959. https://doi.org/10.1134/S1070363211090404
  16. B.V. Shevchenko, B.N. Sudarikov, Technology of Uranium, Gosatomizdat, Moscow, Russia, 1961.
  17. Certificate of authorship USSR No 664355 S.I. Stepanov, Y.A. Leikin, V.D. Gorchakov, V.V. Sergievsky, G.A. Yagodin, V.N. Andrievsky, The Method of Obtaining Salts or Hydroxides of Quaternary Ammonium Bases, 1979.
  18. C. Gotz, G. Geipel, G. Bernhard, Thermodinamical data of uranyl carbonate complexes from absorption spectroscopy, Uranium Min. Hydrogeol. (2008) 907-914.
  19. G.S. Goff, L.F. Brodnax, M.R. Cisneros, S.M. Peper, S.E. Field, B.L. Scott, W.H. Runde, First identification and thermodynamic characterization of the ternary U(VI) species, $UO_2(O_2)(CO_3)_2^{4-}$, in $UO_2-H_2O_2-K_2CO_3$ solutions, J. Inorg. Chem. 47 (6) (2008) 1984-1990. https://doi.org/10.1021/ic701775g
  20. D.Y. Chung, M.S. Park, K.Y. Lee, E.H. Lee, K.W. Kim, J.K. Moon, Decomposition of uranylperoxo-carbonato complex ion in the presence of metal oxides in carbonate media, J. Radioanal. Nucl. Chem. 306 (2015) 761-768. https://doi.org/10.1007/s10967-015-4196-0
  21. A.V. Boyarintsev, S.I. Stepanov, A.A. Chekhlov, A.M. Chekmarev, A.Yu. Tsivadze, Chemistry of the CARBEX process: identification of absorption bands of the ligands in the electronic spectra of aqueous solutions of $Na_4[UO_2(O_2)(CO_3)_2]$, Dokl. Chem. 469 (2) (2016) 227-232. https://doi.org/10.1134/S0012500816080024
  22. A.J. Owen, Uses of Derivative Spectroscopy. Application Note. UV-Visible Spectroscopy, Agilent Technologies, 1995. Publication number 5963-3940E.