• Title/Summary/Keyword: $Ti_{0.5}Al_{0.5}N$

Search Result 121, Processing Time 0.022 seconds

Effect of Sintering Additives and Annealing Atmospheres on the Microwave Dielectric and Sintering Characteristics of $(1-x)CaTiO_3-xLaAlO_3$ System (소결조제와 열처리 분위기가 $(1-x)CaTiO_3-xLaAlO_3$ 계의 소결 및 마이크로파 유전특성에 미치는 영향)

  • 이경태;여동훈;문종하
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.629-635
    • /
    • 1997
  • The effects of the annealing atmospheres(O2, N2) and sintering additives that Bi2O3 is a major composition on the microwave dielectric and sintering propertie of (1-x)CaTiO3-xLaAlO3 system were investigated. The annealing atmospheres and the increase of annealing time after sintering did not affect the relative dielectric constant($\varepsilon$r) and temperature coefficient of resonant frequency($\tau$f) of (1-x)CaTiO3-xLaAlO3 system. However, the Q.f0 values of (1-x)CaTiO3-xLaAlO3 were very sensitive to annealing atmospheres. As the annealing time increased under O2 atmosphere the Q.f0 values of (1-x)CaTiO3-xLaAlO3 enhanced untill 10 hrs in 0.3$\leq$x$\leq$0.6 region, but degraded over that time. The increasing rate of Q.f0 value increased wth increasing x. On the other hand, as the annealing time increased under N2 atmosphere the Q.f0 values were constant in x$\leq$0.6 region, increased gradually in x$\geq$0.7 region. When 0.97Bi2O3-0.03Al2O3 and 0.76Bi2O3-0.24NiO of 3wt% as sintering additives were added to (Ca0.5La0.5) (Ti0.5Al0.5)O3 (x=0.5) the sintering temperature of 1$600^{\circ}C$ was lowered to 140$0^{\circ}C$, and the relative dielectric constant($\varepsilon$r) and temperature coefficient of resonant frequency($\tau$f) were not nearly changed. The addition of 0.97Bi2O3-0.03Al2O3 and 0.76Bi2O3-0.24NiO of 3wt% to (Ca0.5La0.5)(Ti0.5Al0.5)O3 made the Q.f0 values to be lower about 15% and 34%, respectively.

  • PDF

Synthesis and characterization of nanocrystalline Al0.5Ag0.5TiO3 powder

  • Kumar, Sandeep;Sahay, L.K.;Jha, Anal K.;Prasad, K.
    • Advances in nano research
    • /
    • v.1 no.4
    • /
    • pp.211-218
    • /
    • 2013
  • A low-cost, green and reproducible citric acid assisted synthesis of nanocrystalline $Al_{0.5}Ag_{0.5}TiO_3$ (n-AAT) powder is reported. X-ray, FTIR, energy dispersive X-ray, transmission electron microscopy and scanning electron microscopy analyses are performed to ascertain the formation of n-AAT. X-ray diffraction data analysis indicated the formation of monoclinic structure. Spherical shaped particles having the sizes of 3-15 nm are found. The mechanism of nano-transformation for the soft-chemical synthesis of n-AAT has been explained using simple organic chemistry rules and nucleation and growth theory. Dielectric study revealed that AAT ceramic might be a suitable candidate for capacitor applications.

Synthesis and Microstructural Characterization of Mechanically Milled $(Ti_{52}Al_{48})_{100-x}$-xB (x=0,0.5,2,5) Alloys (기계적 분쇄화법으로 제조된 $(Ti_{52}Al_{48})_{100-x}$-xB(x=0,0.5,2,5) 합금분말의 제조 및 미세조직 특성)

  • 표성규
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.98-110
    • /
    • 1998
  • $Ti_{52}Al_{48}$ and $(Ti_{52}Al_{48})_{100-x}B_x(x=0.5, 2, 5)$ alloys have been Produced by mechanical milling in an attritor mill using prealloyed powders. Microstructure of binary $Ti_{52}Al_{48}$ powders consists of grains of hexagonal phase whose structure is very close to $Ti_2Al$. $(Ti_{52}Al_{48})_{95}B_5$ powders contains TiB2 in addition to matrix grains of hexagonal phase. The grain sizes in the as-milled powders of both alloys are nanocrystalline. The mechanically alloyed powders were consolidated by vacuum hot pressing (VHP) at 100$0^{\circ}C$ for 2 hours, resulting in a material which is fully dense. Microstructure of consolidated binary alloy consists of $\gamma$-TiAl phase with dispersions of $Ti_2AlN$ and $A1_2O_3$ phases located along the grain boundaries. Binary alloy shows a significant coarsening in grain and dispersoid sizes. On the other hand, microstructure of B containing alloy consists of $\gamma$-TiAl grains with fine dispersions of $TiB_2$ within the grains and shows the minimal coarsening during annealing. The vacuum hot pressed billets were subjected to various heat treatments, and the mechanical properties were measured by compression testing at room temperature. Mechanically alloyed materials show much better combinations of strength and fracture strain compared with the ingot-cast TiAl, indicating the effectiveness of mechanical alloying in improving the mechanical properties.

  • PDF

Influence of Coating Defect Ratio on Tribological Behavior Determined by Electrochemical Techniques (전기화학적 분석을 통해 산출된 코팅 결함율이 트라이볼로지적 특성에 미치는 영향 평가)

  • Lee Young-Ze;Kim Woo-Jung;Ahn Seung-Ho;Kim Ho-Gun;Kim Jung-Gu;Cho Chung-Woo
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.306-313
    • /
    • 2004
  • Many of the current development in surface modification engineering are focused on multilayered coatings, which have the potential to improve the tribological properties. Four different multilayered coatings were deposited on AISI D2 steel in this study. The prepared samples are designed as $WC-Ti_{0.6}Al_{0.4}N,\;WC-Ti_{0.53}Al_{0.47}N,\;WC-Ti_{0.5}Al_{0.5}N\;and\;WC-Ti_{0.43}Al_{0.57}N$. The multilayered coatings were investigated with respect to coating surface and cross-sectional morphology, roughness, adhesion, hardness, porosity and tribological behaviors. Especially, wear tests of four multilayered coatings were performed by using a ball-on-disc configuration with a linear sliding speed of 0.017 m/sec and a normal load of 5.38 N load. The tests were carried out at room temperature in air by employing AISI 52100 steel ball $(H_R\;=\;66) $ having a diameter of 10 mm. The surface morphology, and topography of the wear scars of samples and balls have been determined by using scanning electron spectroscopy (SEM). Also, wear mechanism was determined by using SEM coupled with energy-dispersive spectroscopy (EDS). Results have showed an improved wear resistance of the $WC-Ti_{1-x}Al_xN$coatings with increasing of Al (aluminum) concentration.

CRYSTALLINE PHASES AND HARDNESS OF (Ti$_{1-x}$Al$_{x}$)N COATINGS DEPOSITED BY REACTIVE SPUTTERING

  • Park, Chong-Kwan;Park, Joo-Dong;Oh, Tae-Sung
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.525-531
    • /
    • 1996
  • (Ti1-xAlx)N films were deposited on high speed steel and silicon substrates by reactive sputtering in mixed $Ar-N_2$ discharges. Crystalline phases and microhardness of ($Ti_1_xAl_x$)N films were investigated with variation of the film composition and substrate RF bias voltage. With Al content x of about 0.6, crystalline phase of ( $Ti_1_xAl_x$N films was changed from single-phase NaCl structure to two phase mixture of NaCl and wurtzite structures: Microhardness of ($Ti_1_xAl_x$)N films was largely improved by applying RF bias voltage above 50 V during deposition. Hardness of ($Ti_1_xAl_x$)N films reached a maximum value for Al content x of about 0.4, and 1900 kg/$mm^2$ was obtained for 1$\mu m$-thick ($Ti_{0.6}Al_{0.4}$)N films.

  • PDF

A Comparative Study of Nanocrystalline TiAlN Coatings Fabricated by Direct Current and Inductively Coupled Plasma Assisted Magnetron Sputtering (DC 스퍼터법과 유도결합 플라즈마를 이용한 마그네트론 스퍼터링으로 제작된 나노결정질 TiAlN 코팅막의 물성 비교 연구)

  • Chun, Sung-Yong;Kim, Se-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.375-379
    • /
    • 2014
  • Nanocrystalline TiAlN coatings were prepared by reactively sputtering TiAl metal target with $N_2$ gas. This was done using a magnetron sputtering system operated in DC and ICP (inductively coupled plasma) conditions at various power levels. The effect of ICP power (from 0 to 300 W) on the coating microstructure, corrosion and mechanical properties were systematically investigated using FE-SEM, AFM and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of TiAlN coatings. With increasing ICP power, the coating microstructure evolved from the columnar structure typical of DC sputtering processes to a highly dense one. Average grain size of TiAlN coatings decreased from 15.6 to 5.9 nm with increasing ICP power. The maximum nano-hardness (67.9 GPa) was obtained for the coatings deposited at 300 W of ICP power. The smoothest surface morphology (Ra roughness 5.1 nm) was obtained for the TiAlN coating sputtered at 300 W ICP power.

A Study on Microstructure and Tribological Behavior of Superhard Ti-Al-Si-N Nanocomposite Coatings (초고경도 Ti-Al-Si-N 나노복합체 코팅막의 미세구조 및 트라이볼로지 거동에 관한 연구)

  • Heo, Sung-Bo;Kim, Wang Ryeol
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.230-237
    • /
    • 2021
  • In this study, the influence of silicon contents on the microstructure, mechanical and tribological properties of Ti-Al-Si-N coatings were systematically investigated for application of cutting tools. The composition of the Ti-Al-Si-N coatings were controlled by different combinations of TiAl2 and Ti4Si composite target powers using an arc ion plating technique in a reactive gas mixture of high purity Ar and N2 during depositions. Ti-Al-Si-N films were nanocomposite consisting of nanosized (Ti,Al,Si)N crystallites embedded in an amorphous Si3N4/SiO2 matrix. The instrumental analyses revealed that the synthesized Ti-Al-Si-N film with Si content of 5.63 at.% was a nanocomposites consisting of nano-sized crystallites (5-7 nm in dia.) and a three dimensional thin layer of amorphous Si3N4 phase. The hardness of the Ti-Al-Si-N coatings also exhibited the maximum hardness value of about 47 GPa at a silicon content of ~5.63 at.% due to the microstructural change to a nanocomposite as well as the solid-solution hardening. The coating has a low friction coefficient of 0.55 at room temperature against an Inconel alloy ball. These excellent mechanical and tribological properties of the Ti-Al-Si-N coatings could help to improve the performance of machining and cutting tool applications.

Oxidation Resistance and Preferred Orientation of TiAIN Thin Films (TiAIN 박막의 우선방위와 내산화성)

  • Park, Yong-Gwon;Park, Yong-Gwon;Wey, Myeong-Yong
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.676-681
    • /
    • 2002
  • Microstructure, mechanical properties, and oxidation resistance of TiAIN thin films deposited on quenched and tempered STD61 tool steel by arc ion plating were studied using XRD, XPS and micro-balance. The TiAIN film was grown with the (200) orientation. The grain size of TiAIN thin film decreased with increasing Al contents, while chemical binding energy increased with Al contents. When hard coating films were oxidized at $850^{\circ}C$ in air, oxidation resistance of both TiN and TiCN films became relatively lower since the surface of films formed non-protective film such as $TiO_2$. However, oxidation resistance of TiAIN film was excellent because its surface formed protective layer such as $_A12$$O_3$ and $_Al2$$Ti_{7}$$O_{15}$, which suppressed oxygen intrusion.

W/TiN 금속 게이트 MOS 소자의 물리.전기적 특성 분석

  • 윤선필;노관종;노용한
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.123-123
    • /
    • 2000
  • 선폭이 초미세화됨에 따라 게이트 전극에서의 공핍 현상 및 불순물 확산의 물제를 갖는 poly-Si 게이트를 대체할 전극 물질로 텅스텐(W)이 많이 연구되어 왔다. 반도체 소자의 배선물질로 일찍부터 사용되어온 텅스텐은 내화성 금속의 일종으로 용융점이 높고, 저항이 낮다. 그러나, 일반적으로 사용되고 있는 CVD에 의한 텅스텐의 증착은 반응가스(WF6)로부터 오는 불소(F)의 게이트 산화막내로의 확산으로 인해 MOS 소자가 크게 열화될수 있다. 본 연구에서는 W/TiN 이중 게이트 전극 구조를 갖는 MOS 캐패시터를 제작하여 전기적 특성을 살펴보았다. P-Type (100) Si위에 RTP를 이용, 85$0^{\circ}C$에서 110 의 열산화막을 성장 및 POA를 수행한 후, 반응성 스퍼터링법에 의해 상온, 6mTorr, N2/Ar=1/6 sccm, 100W 조건에서 TiN 박막을 150, 300, 500 의 3그룹으로 증착하였다. 그 위에 LPCVD 방법으로 35$0^{\circ}C$, 0.7Torr, WF6/SiH4/H2=5/5~10/500sccm 조건에서 2000~3000 의 텅스텐을 증착하였다. Photolithography 공정 및 습식 에칭을 통해 200$\mu\textrm{m}$$\times$200$\mu\textrm{m}$ 크기의 W/TiN 복층 게이트 MOSC를 제작하였다. W/TiN 복측 게이트 소자와 비교분석하기 위해 같은 조건의 산화막을 이용한 알루미늄(Al) 게이트, 텅스텐 게이트 MOSC를 제작하였다. 35$0^{\circ}C$에서 증착된 텅스텐 박막은 10~11$\Omega$/ 의 면저항을 가졌고 미소한 W(110) peak값을 나타내는 것으로 보아 비정질 상태에 가까웠다. TiN 박막의 경우 120~130$\Omega$/ 의 면저항을 가졌고 TiN (200)의 peak 값이 크게 나타난 반면, TiN(111) peak가 미소하게 나타났다. TiN 박막의 두께와 WF/SiH4의 가스비를 변화시켜가며 제작된 MOS 캐패시터를 HF 및 QS C-V, I-V 그리고 FNT를 통한 전자주입 방법을 이용하여 TiN 박막의 불소에 대한 확산 방지막 역할을 살펴 보았다. W/TiN 게이트 MOS 소자는 모두 순수 텅스텐 게이트보다 우수하였고, Al 게이트와 유사한 전기적 특성을 보여주었다. W/TiN 게이트 MOS 소자는 모두 순수 텅스텐 게이트보다 우수하였고, Al 게이트와 유사한 전기적 특성을 보여주었다. TiN 박막이 300 , 500 이고 WF6/SiH4의 가스비가 5:10인 경우 소자 특성이 우수하였으나, 5:5의 경우에는 FNT 전자주입 특성이 열화되기 시작하였다. 그리고, TiN박막의 두께가 150 으로 얇아질 경우에는 WF6/SiH4의 가스비가 5:10인 경우에서도 소자 특성이 열화되기 시작하였다. W/TiN 복층 게이트 MOS 캐패시터를 제작하여 전기적인 특성 분석결과, 순수 텅스텐 게이트 소자의 큰 저전계 누설 전류 특성을 해결할 수 있었으며, 불소확산에 영향을 주는 조건이 WF6/SiH4의 가스비에 크게 의존됨을 알 수 있었다. TiN 박막의 증착 공정이 최적화 될 경우, 0.1$\mu\textrm{m}$이하의 초미세소자용 게이트 전극으로서 텅스텐의 사용이 가능할 것으로 보여진다.

  • PDF

Properties of Pt/${Al_0.33}{Ga_0.67}N$ Schottky Type UV Photo-detector (Pt 전극을 이용한 ${Al_0.33}{Ga_0.67}N$ 쇼트키형 자외선 수광소자의 동작특성)

  • 신상훈;정영로;이재훈;이용현;이명복;이정희;이인환;한윤봉;함성호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.486-493
    • /
    • 2003
  • Schottky type A $l_{0.33}$G $a_{0.67}$N ultraviolet photodetectors were fabricated on the MOCVD grown AlGaN/ $n^{+}$-GaN and AlGaN/AlGaN interlayer/ $n^{+}$-GaN structures. The grown layers have the carrier concentrations of -$10^{18}$, and the mobilities were 236 and 269 $\textrm{cm}^2$/V.s, respectively. After mesa etching by ICP etching system, the Si3N4 layer was deposited for passivation between the contacts and Ti/AL/Ni/Au and Pt were deposited for ohmic and Schottky contact, respectively. The fabricated Pt/A $l_{0.33}$G $a_{0.67}$N Schottky diode revealed a leakage current of 1 nA for samples with interlayer and 0.1$\mu\textrm{A}$ for samples without interlayer at a reverse bias of -5 V. In optical measurement, the Pt/A $l_{0.33}$G $a_{0.67}$N diode with interlayer showed a cut-off wavelength of 300 nm, a prominent responsivity of 0.15 A/W at 280 nm and a UV-visible extinction ratio of 1.5x$10^4./TEX>.