Synthesis and Microstructural Characterization of Mechanically Milled $(Ti_{52}Al_{48})_{100-x}$-xB (x=0,0.5,2,5) Alloys

기계적 분쇄화법으로 제조된 $(Ti_{52}Al_{48})_{100-x}$-xB(x=0,0.5,2,5) 합금분말의 제조 및 미세조직 특성

  • Published : 1998.06.01

Abstract

$Ti_{52}Al_{48}$ and $(Ti_{52}Al_{48})_{100-x}B_x(x=0.5, 2, 5)$ alloys have been Produced by mechanical milling in an attritor mill using prealloyed powders. Microstructure of binary $Ti_{52}Al_{48}$ powders consists of grains of hexagonal phase whose structure is very close to $Ti_2Al$. $(Ti_{52}Al_{48})_{95}B_5$ powders contains TiB2 in addition to matrix grains of hexagonal phase. The grain sizes in the as-milled powders of both alloys are nanocrystalline. The mechanically alloyed powders were consolidated by vacuum hot pressing (VHP) at 100$0^{\circ}C$ for 2 hours, resulting in a material which is fully dense. Microstructure of consolidated binary alloy consists of $\gamma$-TiAl phase with dispersions of $Ti_2AlN$ and $A1_2O_3$ phases located along the grain boundaries. Binary alloy shows a significant coarsening in grain and dispersoid sizes. On the other hand, microstructure of B containing alloy consists of $\gamma$-TiAl grains with fine dispersions of $TiB_2$ within the grains and shows the minimal coarsening during annealing. The vacuum hot pressed billets were subjected to various heat treatments, and the mechanical properties were measured by compression testing at room temperature. Mechanically alloyed materials show much better combinations of strength and fracture strain compared with the ingot-cast TiAl, indicating the effectiveness of mechanical alloying in improving the mechanical properties.

Keywords

References

  1. JOM Y. W. Kim
  2. Intermetallic Compounds v.2 S. C. Huang;J. C. Chesnutt;J. H. Westbrook(ed.);R. L. Fleischer(ed.)
  3. JOM Y. W. Kim
  4. J. Mater. Sci. v.27 F. H. Froes;C. Suryanarayana;D. Eliezer
  5. Microstructure/Property Rclationships in Titanium Aluminides and Alloys Y. W. Kim(ed.);R. R. Boycr(ed.)
  6. Intermetallic Compounds-Structure and Mechanical Properties O. Izumi(ed.)
  7. Intermetallic Compounds for High-Tempcrature Structural Applications M. Yamaguchi(ed.);H. Fukutomi(ed.)
  8. High Temperature Ordered Intermetallic Alloys V I. Baker(ed.);R. Darolia(ed.)J. D. Whittenberger(ed.);M. H. Yoo(ed.)
  9. Gamma Titanium Aluminides Y-W Kim(ed.);R. Wagner(ed.);M. Yamaguchi(ed.)
  10. Mater. Trans. v.37 F. H. Froes;C-G. Li;P. R. Taylor;D. Chellman;F. Hehmann;C. M. Ward-Close
  11. Heat-Resistant materials C. Suryanarayana;F. H. Froes;K. Natesan(ed.);D. J. Tillack(ed.)
  12. Intermetallics v.4 C. C. Koch;J. D. Whittenberger
  13. Mater. Res. Soc. Proc. v.213 High-Temperature Ordered Intermetallic Alloys IV S. C. Huang;E. L. Hall;L. A. Hohnson(ed.);D. P. Pope(ed.);J. O. Stiegler(ed.)
  14. Metall. Trans. A v.22 M. Saqib;I. Weiss;G. M. Mehrotra;E. Clevenger;A. G. Jackson;H. A. Lipsitt
  15. J. Mater. Res. v.8 no.11 M. Oehring;T. Klassen;R. Bormann
  16. J. Mater. Sci. v.26 W. Guo;S. Martclli;N. Burgio;M. Magini;F. Padella;E. Paradiso;I. Soletta
  17. Intermetallic Compounds-Structure and Mechanical Properties(JIMIS6) H. Kimura;S. Kobayashi;O. Izumi(ed.)
  18. J. Non-Cryst. Solids v.76 R. B. Schwarz;R. R. Petrich;C. K. Saw
  19. Appl. Phys. Lett. v.48 E. Hellstern;L. Shultz
  20. Phys. Mct. Mctallogr. v.53 A. Y. Yermakov;Y. Y. Yurchikow;V. A. Barinow
  21. 대한금속학회지 투고 정현호;표성규;황승준;김낙준
  22. Phil. Trans. Roy. Soc. v.A281 B. F. Buxton;J. A. Eades;J. W. Steeds;G. M. Rackham
  23. Introd. to Analytical Electron Microscopy J. W. Steeds;J. J. Haren(ed.);J. I. Goldstein(ed.);D. C. Joy(ed.)
  24. Acta Met. v.33 M. J. Kaufman;L. A. Fraser
  25. Acta Cryst. v.19 J. Gionnes;A. F. Moodie
  26. International Table for Crystallography v.A T. Hahn(ed.);Dortrecht(ed.);Holland(ed.)
  27. Gamma Titanium Aluminides Sung G. Pyo;N. J. Kim;Y-W Kim(ed.);R. Wagner(ed.);M. Yamaguchi(ed.)
  28. Structual Intermetallics M. Yamaguchi;H. Inui;R. Darolia(ed.)(et al.)