• Title/Summary/Keyword: $TiO_2/TiOF_2$

Search Result 7,836, Processing Time 0.037 seconds

Phase Relation and Microwave Dielectric Properties of $BaO-(Nd, Sm)_2O_3-TiO_2$ Ceramic System ($BaO-(Nd, Sm)_2O_3-TiO_2$계 세라믹스의 상관계 및 마이크로파 유전특성)

  • 김희도;김진호;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.995-1004
    • /
    • 1994
  • Phase relation and microwave dielectric properties of the system BaO.(Nd1-xSmx)2O3.TiO2 (n=4, 5) were studied. With n=5 (1 : 1 : 5), Ba2Ti9O20 and TiO2 formed in case of X$\leq$0.7, and Ba2Ti9O20 and Sm2Ti2O7 formed at X=1.0 as the second phases dispersed in fine-grained orthorhombic matrix phase. With n=4 (1 : 1 : 4). on the contrary, only fine grains of an ortho-rhombic phase were observed irrespective of Nd/Sm ratio. The compositions of these two stable orthorombic phases having distinct lattic constants even with the same Nd/Sm ratio were estimated as 4BaO.5(Nd1-xSmx)2O3.18TiO2 and BaO.(Nd1-xSmx)2O3.4TiO2 with n=5 and n=4 in the system BaO.(Nd1-xSmx)2O3.TiO2, respectively. Consequently the composition BaO.(Nd1-xSmx)2O3.5TiO2 lies in the compatible triangle of 4BaO.5(Nd1-xSmx)2O3.18TiO2 and the second phases mentioned above. The microwave dielectric properties (~4 GHz) of BaO.(Nd1-xSmx)2O3.5TiO2 can be controlled effectively by adjusting Sm content : with increasing X from 0 to 0.7, both dielectric constant and the temperature coefficient of resonant frequency decreased monotonically from 82 to 65 and from 91 (ppm/$^{\circ}C$) to -19(ppm/$^{\circ}C$), respectively, while unloaded Q(Qo) remained constant at about 2,600.

  • PDF

Hydrothermal synthesis of $BaTiO_3$ fine particles (수열법에 의한 $BaTiO_3$ 미립자의 합성)

  • 최종건;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.49-54
    • /
    • 1998
  • $BaTiO_3$ fine particles were synthesized by hydrothermal method. $TiO_2$ and $Ba(OH)_2{\cdot}8H_2O$ were used as staring materials, and it was possible to synthesize $BaTiO_3$ fine particles in pure water by using excess $Ba(OH)_2{\cdot}8H_2O$. The shape of synthesized particles are irregular but near spherical, and the particle size depends on the temperature and Ba/Ti atomic ratio.

  • PDF

Photocatalytic activity of rutile TiO2 powders coupled with anatase TiO2 nanoparticles using surfactant (계면활성제를 이용하여 anatase TiO2 나노 입자와 결합된 rutile TiO2 분말의 광촉매 특성)

  • Byun, Jong Min;Park, Chun Woong;Kim, Young In;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.257-262
    • /
    • 2018
  • The coupling of two semiconducting materials is an efficient method to improve photocatalytic activity via the suppression of recombination of electron-hole pairs. In particular, the coupling between two different phases of $TiO_2$, i.e., anatase and rutile, is particularly attractive for photocatalytic activity improvement of rutile $TiO_2$ because these coupled $TiO_2$ powders can retain the benefits of $TiO_2$, one of the best photocatalysts. In this study, anatase $TiO_2$ nanoparticles are synthesized and coupled on the surface of rutile $TiO_2$ powders using a microemulsion method and heat treatment. Triton X-100, as a surfactant, is used to suppress the aggregation of anatase $TiO_2$ nanoparticles and disperse anatase $TiO_2$ nanoparticles uniformly on the surface of rutile $TiO_2$ powders. Rutile $TiO_2$ powders coupled with anatase $TiO_2$ nanoparticles are successfully prepared. Additionally, we compare the photocatalytic activity of these rutile-anatase coupled $TiO_2$ powders under ultraviolet (UV) light and demonstrate that the reason for the improvement of photocatalytic activity is microstructural.

An Experimental Study for the Construction of Photocatalytic Method Concrete Road Structure (광촉매 콘크리트 도로 구조물의 효율적 시공방법에 대한 실험적 연구)

  • Hong, Sung Jae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES : About 35% of air pollutant is occurred from road transport. NOx is the primary pollutant. Recently, the importance of NOx removal has arisen in the world. $TiO_2$ is very efficient for removing NOx by photocatalytic reaction. The mechanism of removing NOx is the reaction of photocatalysis and solar energy. Therefore, $TiO_2$ in concrete need to be contacted with solar radiation to be activated. In general, $TiO_2$ concrete are produced by substitute $TiO_2$ as a part of concrete binder. However, 90% of $TiO_2$ in the photocatalysis can not contacted with the pollutant in the air and solar radiation. Coating and penetration method are attempted as the alternative of mixing method in order to locate $TiO_2$ to the surface of structure. METHODS : The goal of this study was to attempt to locate $TiO_2$ to the surface of concrete, so we can use the concrete in pavement construction. The distribution of $TiO_2$ along the depth were confirmed by basing on the comparison of $TiO_2$ compare by using the EDAX(Energy Dispersive X-ray Spectroscopy). RESULTS : $TiO_2$ were distributed within 3mm from concrete surface. This distribution of $TiO_2$ is desirable, since the $TiO_2$ induce photocatalysis are located to where they can be contacted with the air pollutant and solar radiation. CONCLUSIONS : Nano size $TiO_2$ is easily penetration in the top 3mm of concrete surface. By the penetration $TiO_2$ concrete can be produced with the use of only 10% of $TiO_2$, by comparing the mixing types.

Dependence of the Formation of $TiO_{2\pm}{\delta}$ Films on Plasma Process Variables (플라즈마 공정 변수가 $TiO_{2\pm}{\delta}$ 박막 형성에 미치는 영향)

  • Park, Sang-Gi;Gang, Bong-Ju;Lee, Won-Hui;Lee, Jae-Gap
    • Korean Journal of Materials Research
    • /
    • v.10 no.11
    • /
    • pp.732-737
    • /
    • 2000
  • Plasma enhanced chemical vapor deposition of $TiO_{2$\pm}{\delta}$ has been carried out using TEMAT [tetrakis(ethylmethylamido) titanium] and $H_2$. Increasing the power from 300 W to 500 W produced the high density plasma, leading to the formation of TiO$_2$films with an increased ratio of Ti to O and a negligible amount of C and N. Applying the bias of 30W to the substrate in creased the growth rate of the film with a slightly increased content of Ti in the film. In addition, $H_2O$ was from either the residual gas in the gase pressure or $H_2(/He)$ gas and actively participated in the formation of $TiO_2$ films. Consequently, Ti ions created in the plasma could be a main contributor to $TiO_2$ formation with a slight amount of $H_2O(~10^{-4}Toor)$ in the ambient, which provided the dissociation of TEMAT.

  • PDF

Synthesis, Characterization, and Application of Zr,S Co-doped TiO2 as Visible-light Active Photocatalyst

  • Kim, Sun-Woo;Khan, Romana;Kim, Tae-Jeong;Kim, Wha-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1217-1223
    • /
    • 2008
  • A series of Zr,S co-doped $TiO_2$ were synthesized by a modified sol-gel method and characterized by various spectroscopic and analytical techniques. The presence of sulfur caused a red-shift in the absorption band of $TiO_2$. Co-doping of sulfur and zirconium (Zr-$TiO_2$-S) improves the surface properties such as surface area, pore volume, and pore diameter and also enhances the thermal stability of the anatase phase. The Zr-$TiO_2$-S systems are very effective visible-light active catalysts for the degradation of toluene. All reactions follow pseudo firstorder kinetics with the decomposition rate reaching as high as 77% within 4 h. The catalytic activity decreases in the following order: Zr-$TiO_2$-S >$TiO_2$-S >Zr-$TiO_2$>$TiO_2$$\approx$ P-25, demonstrating the synergic effect of codoping with zirconium and sulfur. When the comparison is made within the series of Zr-$TiO_2$-S, the catalytic performance is found to be a function of Zr-contents as follows: 3 wt % Zr-TiO2-S >0.5 wt % Zr-$TiO_2$-S> 5 wt % Zr-$TiO_2$-S >1 wt % Zr-$TiO_2$-S. Higher calcination temperature decreases the reactivity of Zr-$TiO_2$-S.

Comparison of OH radical generation depending on anatase to rutile ratio of TiO2 nanotube Photocatalyst (Anatase와 Rutile 결정상 비율에 따른 TiO2 nanotube의 OH radical 생성량 비교 연구)

  • Lee, Hyojoo;Lee, Yongho;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.550-556
    • /
    • 2019
  • This study was carried out to improve the photocatalytic reaction of TiO2 photocatalyst. During the photocatalytic reaction, OH radicals are generated and they have an excellent oxidation capability for wastewater treatment. To evaluate the OH radicals generated according to crystallographic structure of TiO2 nanotubes photocatalyst, a probe compound, 4-Chlorobenzoic acid was monitored to evaluate OH radical. Ultraviolet light was applied for photocatalytic reaction of TiO2. The 4-Chlorobenzoic acid solution was prepared at laboratory. TiO2 nanotube was grown on titanium plate by using anodization method. The annealing temperature for TiO2 nanotube was varied from 400 to 900 ℃ and the crystal forms of the TiO2 nanotube was analyzed. Depending on annealing temperature, TiO2 nanotubes have shown different crystal forms; 100% anatase (0 % rutile), 18.4 % rutile (81.6 % anatase), 36.6 % rutile (63.4 % anatase) and 98.6% rutile (1.4% anatase). As the annealing temperature increases, the rutile ratio increases. OH radical generation from 18.4 % rutile TiO2 nanotube plate was about 3.8 times higher than before annealing and 1.4 times higher than only 100 % anatase-TiO2 nanotube. The efficiency of the 18.4% rutile TiO2 nanotube was the best in comparison to TiO2 nanotube with 18.4 %, 36.6 % and 98.6 % rutile. As a result, photocatalytic ability of 18.4 % rutile-TiO2 nanotube plate was higher than 100 % anatase-TiO2 nanotube plate.

The Effect of Nano-scale Zn-$TiO_2$ and Pure $TiO_2$ Particles were Prepared using a Hydrothermal Method on Zebrafish Embryogenesis (수열합성법으로 제조된 Zn-$TiO_2$ 나노입자와 $TiO_2$ 나노입자가 zebrafish 배발생에 미치는 영향)

  • Yeo, Min-Kyeong;Kim, Hyo-Eun
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.4
    • /
    • pp.333-339
    • /
    • 2009
  • In this study, we investigated the biological toxicity of nano-scale Zn (0.1, 0.5, and 1 mol%)-doped $TiO_2$ and pure $TiO_2$ nanoparticles using zebrafish embryogenesis as our model organism. Zn-doped $TiO_2$ nanoparticles were prepared using a conventional hydrothermal method for the insertion of zinc into the $TiO_2$ framework. The characters of Zn-doped $TiO_2$ (0.1%, 0.5%, 1%Zn) and pure $TiO_2$ were about 7~8 nm. These sizes were smaller than 100~200 nm of $TiO_2$ was prepared using the sol-gel method. Particularly, in this study, we found no significant biological toxicity in the hatching rate and abnormal rate under expose pure $TiO_2$ and Zn-doped $TiO_2$ nanoparticles were prepared using a conventional hydrothermal method of zebrafish. It was different from the biological damage under $TiO_2$ nanoparticles were prepared using sol-gel method. We assessed that the damage was not linked to the particle's nanometer size, but rather due to the prepare method. Moreover, $TiO_2$ nanoparticles were prepared using a hydrothermal method were not shown to cause cytotoxic effects, like apoptosis and necrosis, that are the major markers of toxicity in organisms exposed to nanomaterials. Therefore, there is some relationship with biological toxicity of nanoparticles and the prepare method of nanometer size particles.

Structural and Morphological Behavior of TiO2 Rutile Obtained by Hydrolysis Reaction of Na2Ti3O7

  • Lee, Seoung-Soo;Byeon, Song-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1051-1054
    • /
    • 2004
  • The structural transformation behavior of $Na_2Ti_3O_7$ by hydrolysis was investigated in mild and strong acidic aqueous medium. Compared with $K_2Ti_4O_9,\;Na_2Ti_3O_7$ exhibits quite different structural and morphological transformation behavior despite their similar layered structural characteristics. $TiO_2(B)$ obtained by heat treatment of $H_2Ti_3O_7\;at\;350^{\circ}C$ transforms to rutile $H_2Ti_3O_7\;at\;900^{\circ}C$. This temperature is much lower than $1200{\circ}C$, the temperature for anatase to rutile transition when $K_2Ti_4O_9$ is used as a starting titanate. A rectangular rod shape and size of $TiO_2(B)$ particles obtained from $Na_2Ti_3O_7$ is also different from a fibrous structure of $TiO_2(B)$ prepared using $K_2Ti_4O_9$. Rutile crystals of 100 nm diameter with a corn-like morphology and large surface area are directly obtained when the hydrolysis of $Na_2Ti_3O_7$ is carried out at $100^{\circ}C$ in a strong acid solution. The structure of starting titanates and the hydrolysis conditions are an important factor to decide the particle size and morphology of $TiO_2(B)\;and\;TiO_2$.

pH Dependence on the Degradation of Rhodamine B by Fe-ACF/$TiO_2$ Composites and Effect of Different Fe Precursors (Fe-ACF/$TiO_2$ 복합체에 의한 로다민 B 용액의 분해에 있어서 pH 의존성 및 여러 가지 Fe 전구체의 효과)

  • Zhang, Kan;Oh, Won-Chun
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.408-415
    • /
    • 2009
  • Iron-loaded activated carbon fibers (Fe-ACF) supported titanium dioxide ($TiO_2$) photocatalyst (Fe-ACF/$TiO_2$) was synthesized using a sol-gel method. Three different types of Fe-ACF/$TiO_2$ were obtained by treatment with different precursor of Fe, and characterized using BET, SEM, XRD and EDX analysis. The photocatalytic activity of Fe-ACF/$TiO_2$ was investigated by the degradation of Rhodamine B (Rh.B) solution under UV irradiation. From the experimental results, it was revealed that Fe-ACF/$TiO_2$ composites show considerable photocatalytic ability for the removal of Rh.B by comparing non-treated ACF/$TiO_2$ composites. And photo-Fenton reaction with Fe element was incoordinately influenced due to different precursor of Fe. It clearly indicates that Fe-ACF/$TiO_2$ composites prepared using $FeCl_3$ provided the highest photo-Fenton activity, then, which was affected by pH changes on the degradation of Rh.B.