계면활성제를 이용하여 anatase TiO_2 나노 입자와 결합된 rutile TiO_2 분말의 광촉매 특성

변종민 $^{a} \cdot$ 박천웅 $^{b} \cdot$ 김영인 $^{b} \cdot$ 김영도 b,*

"서울과학기술대학교 신소재공학과, ^b한양대학교 신소재공학과

Photocatalytic activity of rutile TiO₂ powders coupled with anatase TiO₂ nanoparticles using surfactant

Jong Min Byun^a, Chun Woong Park^b, Young In Kim^b, and Young Do Kim^{b,*}

^aDepartment of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea ^bDepartment of Materials Science and Engineering, Hanyang University, Seoul 04763, Korea (Received June 11, 2018; Revised June 15, 2018; Accepted June 19, 2018)

Abstract The coupling of two semiconducting materials is an efficient method to improve photocatalytic activity via the suppression of recombination of electron-hole pairs. In particular, the coupling between two different phases of TiO_2 , i.e., anatase and rutile, is particularly attractive for photocatalytic activity improvement of rutile TiO_2 because these coupled TiO_2 powders can retain the benefits of TiO_2 , one of the best photocatalysts. In this study, anatase TiO_2 nanoparticles are synthesized and coupled on the surface of rutile TiO_2 powders using a microemulsion method and heat treatment. Triton X-100, as a surfactant, is used to suppress the aggregation of anatase TiO_2 nanoparticles and disperse anatase TiO_2 nanoparticles uniformly on the surface of rutile TiO_2 powders. Rutile TiO_2 powders coupled with anatase TiO_2 nanoparticles are successfully prepared. Additionally, we compare the photocatalytic activity of these rutile-anatase coupled TiO_2 powders under ultraviolet (UV) light and demonstrate that the reason for the improvement of photocatalytic activity is microstructural.

Keywords: Photocatalyst, Titanium dioxide, coupling effect, surfactant, Photocatalytic activity

1. 서 론

광촉매(Photocatalyst)란 빛 에너지로부터 광화학반응에 의해 화학반응을 촉진시키는 물질을 의미하며, 빛 에너지 의 흡수를 통해 생성된 전자와 정공이 광촉매의 표면에 도달하여 다른 물질과 산화 또는 환원 등의 화학반응을 일으키게 된다. 또한 대부분 광촉매의 광화학반응에서 반 응물질은 물과 산소이므로 이러한 반응물질의 환원전위보 다 높은 전도대(Conduction band)를 갖고 산화전위보다 낮 은 가전자대(Valence band)를 갖는 반도체 물질들이 광촉 매의 범주에 포함된다.

이러한 광촉매 중에서도 이산화 타이타늄(Titanium

dioxide, TiO₂)은 광촉매의 필수 특성인 산화력이 매우 크며, 인체에 무해하고 더불어 화학적인 안정성이 뛰어나기 때 문에 다른 광촉매와는 달리 반영구적인 사용이 가능하다 는 장점을 지니는 가장 대표적인 광촉매 중의 하나이다 [1,2]. TiO₂는 결정 구조에 따라 저온 안정상인 anatase와 중간상인 brookite, 그리고 고온 안정상인 rutile 구조로 분 류되며, 결정 구조에 따라 밴드 갭의 차이가 존재하나 모 두 광촉매로 활용이 가능하다. 하지만 brookite TiO₂의 경 우에는 자연상태에서는 거의 존재하지 않고 인위적으로도 순수한 brookite TiO₂만을 합성하기는 쉽지 않기 때문에 TiO₂와 관련한 대부분의 연구는 anatase TiO₂와 rutile TiO₂ 에 집중되어 왔으며[3,4], 특히 최근에는 상대적으로 좁은

^{*}Corresponding Author: Young Do Kim, TEL: +82-2-2220-0408, FAX: +82-2-2220-4230, E-mail: ydkim1@hanyang.ac.kr

밴드 갭(3.03 eV)에 기인한 전자-정공 재결합으로 인해 가 시광선 영역에서의 사용이 극히 제한적인 rutile TiO₂의 광 촉매 특성 향상을 위해 금속 및 비금속 물질을 도핑하거 나 표면처리 등을 통해 비표면적을 증가시키고 밴드 갭을 갖는 반도체 물질과 커플링(coupling)하는 등의 다양한 연 구가 시도되고 있다[5-12].

광촉매 특성 향상을 위한 다양한 방법 중에서 상이한 밴 드 갭을 갖는 반도체 물질과의 커플링은 두 물질 간의 물 리, 화학적 결합으로 인해 계면에서 전자와 정공의 교환이 일어나는 상태가 되며, 결과적으로 전하 분리를 증가시키 고 빛 에너지를 흡수할 수 있는 파장 영역을 확장시킴으 로써 가스와 액상 반응 모두에 대해 매우 높은 광촉매 효 율을 나타낸다[13,14]. 이러한 커플링 효과는 다른 반도체 물질이 아닌 rutile TiO₂와 밴드 갭에 차이가 있는 anatase TiO₂ (3.20 eV) 사이에도 적용이 가능하며, rutile TiO₂와 anatase TiO₂를 커플링하는 경우 단일 상태로 존재할 때에 비해 향상된 광촉매 특성을 가지는 동시에 TiO₂가 갖는 화학적 안정성과 인체에 대한 무해성 등을 그대로 유지할 수 있다는 큰 장점을 가진다.

T. Kawahara 등은 rutile TiO₂ 분말을 황산 용액을 이용 하여 식각(etching) 후 rutile TiO₂ 분말의 표면에 anatase TiO₂를 석출시켜 rutile-anatase coupled TiO₂ 분말을 제조 하였으며, 이러한 rutile-anatase coupled TiO₂ 분말은 커플 링 효과에 의해 대조군으로 적용된 상용 P-25 분말보다 우수한 광촉매 특성을 갖는다고 보고하였다[15]. 또한 H. Li 등은 나노 섬유 형태의 anatase TiO₂와 rutile TiO₂를 대 상으로 혼합비율에 따른 광촉매 특성을 분석하였으며, anatase TiO₂와 rutile TiO₂의 비율이 97:3일 때 광촉매 효 과가 가장 크다고 보고하였다[16].

현재까지 수행된 anatase TiO₂와 rutile TiO₂의 커플링 연 구는 커플링 효과에 의한 광촉매 특성 향상과 주로 각 상 의 분율 변화에 의한 효과에 관한 것이 대부분이지만[13, 17-20], 각각의 TiO₂ 형태와 실험 조건 등에 따라 최적의 광촉매 특성을 가지는 anatase TiO₂와 rutile TiO₂의 비율 이 다소 상이하며, anatase TiO₂와 rutile TiO₂ 분말 간의 접촉 및 결합 상태에 따른 광촉매 효율의 변화에 대한 연 구는 미비한 실정이다.

따라서 본 연구에서는 계면활성제를 이용한 합성과 열 처리를 통해 rutile TiO₂ 분말의 표면에 나노 크기의 anatase TiO₂ 분말이 커플링된 rutile-anatase coupled TiO₂ 분말을 제조하였으며, 계면활성제가 anatase TiO₂ 나노 입 자와 rutile TiO₂ 분말 간의 접촉 및 결합 상태에 미치는 영향과 광촉매 효율의 변화, 그리고 이들의 상관관계를 분 석하고자 하였다.

2. 실험 방법

2.1. Rutile-anatase coupled TiO₂ 제조 및 분석

본 연구에서는 순도 99.9%, 입도 5 μm 이하의 rutile TiO₂ 분말(Sigma-Aldrich, Japan)을 시작분말로 사용하였으 며, 200 mL 비이커에 rutile TiO₂ 분말 0.5 g과 증류수 100 mL를 넣고 자석 교반기를 이용하여 250 rpm의 속도 로 20분간 교반 후 계면활성제인 triton X-100 (Sigma-Aldrich, USA)를 1~3 g까지 첨가하고 다시 250 rpm의 속 도로 20분간 교반하였다. 이후 순도 99.9%를 가지는 액체 상태의 TiCl₄(Sigma-Aldrich, USA)를 증류수로 10배 희석 한 수용액 3 mL를 넣고 250 rpm의 속도로 교반하며, 순도 25~28%의 NH4OH (Daejung, Korea)를 증류수로 2배 희석 시킨 수용액을 스포이드를 이용하여 pH 8이 될 때까지 첨 가하였다. 제조된 분말은 증류수를 이용해 3회 세척하고 오븐에서 60℃로 24시간동안 건조를 진행하였다. 이러한 분말을 2g을 칭량하여 박스로(box furnace) 내부에 장입하 고 대기 분위기에서 10°C/분으로 500°C까지 승온 후 5시간 동안 열처리를 진행하였다. 또한 광촉매 특성 비교를 위해 대조군 분말을 제조하였으며, 이는 실험군 분말과 동일한 조건 하에서 개별적으로 동일한 양의 anatase TiO2 나노 분 말을 합성하고 이를 초음파분산기를 이용하여 rutile TiO2 분말 0.5 g과 단순 혼합 및 건조하여 제조하였다.

제조된 rutile-anatase coupled TiO₂ 분말의 결정구조는 X-선 회절분석기(X-ray diffractometer, XRD, D/MAX 2500/PC, Rigaku)를 이용하여 분석되었으며, rutile-anatase coupled TiO₂ 분말의 미세구조는 주사전자현미경(Scanning electron microscope, SEM, JSM-6360, JEOL)과 투과전자현미경 (Transmission electron microscope, TEM, JEM-2100F, JEOL) 을 이용하여 관찰하였다.

2.2. 광촉매 특성 평가

광촉매 특성 평가에는 순도 97%의 메틸렌 블루 (Methylene blue, Daejung, Korea)를 증류수를 이용해 10 ppm으로 희석시킨 수용액을 사용하였다. 0.05 g의 rutileanatase coupled TiO₂ 분말과 10 ppm의 메틸렌 블루 용액 100 mL를 비이커에 넣은 후 차광상태에서 초음파분산기 를 이용하여 초음파를 10분간 가해주어 분산 및 흡착시켰 다. 또한 흡착에 의한 변수를 차단하기 위해 자석 교반기 를 넣고 250 rpm으로 회전시키며 2시간 동안 암실에 두어 분말에 메틸렌 블루를 충분히 흡착시켰다. 흡착이 끝난 rutile-anatase coupled TiO₂ 분말은 암실에서 365 nm의 파 장을 갖는 자외선을 10 cm 거리에서 최대 30분까지 5분 단위로 조사하였으며, 각각의 용액은 UV-visible 분광기 (Agilent Technologies, Agilent 8435)를 사용하여 메틸렌

Fig. 1. XRD patterns of (a) rutile-anatase mixed TiO_2 powders and rutile-anatase coupled TiO_2 powders synthesized by using surfactant of (b) 0 g, (c) 1 g, (d) 2 g, and (e) 3 g.

블루의 농도 변화를 분석하였다.

3. 결과 및 고찰

그림 1은 계면활성제인 triton X-100의 첨가량을 달리하 여 합성한 rutile-anatase coupled TiO₂ 분말과 대조군으로 적용된 rutile-anatase TiO₂ 혼합 분말의 XRD 분석 결과이 다. 분석 결과 계면활성제를 첨가하여 anatase TiO₂를 합 성한 모든 혼합 분말에서 목표한 바와 같이 anatase TiO₂ 피크와 rutile TiO₂ 피크가 존재하는 것으로 확인되었다. 일반적으로 계면활성제의 첨가는 합성 분말 즉, 본 연구의

경우에서는 anatase TiO,의 입도와 분산에 영향을 주는 것 으로 알려져 있으므로 SEM 분석을 통해 각 혼합 분말의 미세구조를 분석하였으며, 그 결과를 그림 2로 나타내었 다. 먼저, 개별적으로 합성한 anatase TiO₂ 나노 입자와 rutile TiO2 분말을 습식 혼합한 대조군 분말(그림 2(a))의 경우에는 anatase TiO₂ 나노 입자가 rutile TiO₂ 분말과 균 일하게 혼합되지 못하고 국부적으로 약 20 nm 크기의 anatase TiO₂ 나노 입자들이 응집되어 수백 nm 크기의 응 집체로 존재하는 것으로 확인되었다. 반면에 그림 2(b)의 계면활성제를 첨가하지 않고 anatase TiO2를 합성한 혼합 분말의 경우에는 응집된 anatase TiO, 나노 입자들이 거의 존재하지 않았으며, 그림 2(a)의 대조군 분말에 비해 anatase TiO₂ 나노 입자들이 상대적으로 rutile TiO₂ 분말 의 표면에 분산되어 존재하였다. 이는 anatase TiO₂ 나노 입자의 전구체인 Ti(OH)4가 rutile TiO2 분말의 표면에서 불균일 핵 생성을 통해 형성 및 성장하였기 때문인 것으 로 예상된다. 또한 triton X-100이 1 g된 첨가된 그림 2(c) 의 경우에는 계면활성제가 첨가되지 않은 분말과 마찬가 지로 응집된 anatase TiO₂ 나노 입자들이 확인되지 않았으 며, 계면활성제가 첨가되지 않은 분말에 비해 rutile TiO2 분말의 표면에 상대적으로 많은 양의 anatase TiO2 나노 입자가 균일하게 형성되었다. 이러한 결과는 계면활성제 를 첨가했을 때 계면활성제의 소수기는 rutile TiO, 분말의 표면 쪽으로 배열하고 친수기는 증류수 쪽으로 배열하게 되는데 이 때 친수기는 anatase TiO2 나노 입자의 전구체 인 Ti(OH)4의 석출 초기에 이들을 흡착하는 역할을 하므 로[21], 결과적으로 anatase TiO2 나노 입자의 응집이 억제

Fig. 2. SEM images of (a) rutile-anatase mixed TiO_2 powders and rutile-anatase coupled TiO_2 powders synthesized by using surfactant of (b) 0 g, (c) 1 g, (d) 2 g, and (e) 3 g.

되고, 특히 rutile TiO₂ 분말의 표면에 anatase TiO₂ 나노 입자가 균일하게 분산되는 것으로 판단된다. 그러나 계면 활성제의 첨가량이 점차 증가하면 그림 2(d) 및 (e)와 같 이 rutile TiO₂ 분말의 표면에 위치한 anatase TiO₂ 나노 입 자 이외에도 부분적으로 수십 nm 크기로 응집된 anatase TiO2 나노 입자들이 존재하는 것으로 확인되며, 계면활성 제를 1g 첨가했을 때에 비해 상대적으로 분산도가 감소 하는 것으로 판단된다. 이는 계면활성제의 첨가량이 증가 함에 따라 계면활성제의 농도가 임계 micelle 농도 이상이 되므로 계면활성제가 rutile TiO2의 표면에 배열될 때의 깁 스 자유에너지(Gibbs free energy) 보다 micelle 구조를 형 성할 때의 깁스 자유에너지가 낮아지게 되고 이로 인해 rutile TiO₂의 표면에 흡착된 계면활성제 이외에 micelle 구 조를 형성하고 있는 계면활성제의 양 또한 증가하기 때문 인 것으로 판단된다. 이렇게 계면활성제의 첨가량이 증가 함에 따라 rutile TiO,의 표면과 용액 내에서의 계면활성제 의 거동을 그림 3으로 나타내었다. 결과적으로 micelle 구 조의 계면활성제가 존재하는 경우 앞서 언급한 바와 같이 계면활성제의 친수기에 anatase TiO2 나노 입자의 전구체 인 Ti(OH)4가 석출되므로 rutile TiO2 분말의 표면 이외에 부분에서도 anatase TiO2 나노 입자를 생성할 수 있고, 이 로 인해 분산도는 상대적으로 감소하며 부분적으로 응집 된 anatase TiO, 나노 입자가 존재하는 것으로 판단된다. 그림 4는 계면활성제의 첨가량을 달리하여 합성한

고급 4℃ 계신될 3세여 점거 3절 될다이어 집 3원 rutile-anatase coupled TiO₂ 분말과 대조군으로 제조된 anatase TiO₂ 나노 입자와 rutile TiO₂ 분말을 습식 혼합한 분말의 광촉매 특성을 분석한 결과이다. 혼합 분말의 광촉 매 특성은 계면활성제를 1 g 첨가하였을 때가 가장 우수 하였으며, 계면활성제를 2 g과 3 g 첨가한 경우에는 1 g 첨

Fig. 4. Photocatalytic activity under UV light range of (a) rutile-anatase mixed TiO_2 powders and rutile-anatase coupled TiO_2 powders synthesized by using surfactant of (b) 0 g, (c) 1 g, (d) 2 g, and (e) 3 g.

가한 혼합 분말과 비교하여 광촉매 특성이 다소 감소하였 다. 이러한 광촉매 특성 감소의 원인은 앞서 언급한 바와 같이 계면활성제의 첨가량이 증가함에 따라 용액 내에 micelle 구조를 형성하고 있는 계면활성제의 양이 증가하 고 이로 인해 anatase TiO₂ 나노 입자의 분산도가 상대적 으로 감소하며, 일부 응접이 발생하였기 때문인 것으로 판 단된다. 또한 계면활성제를 첨가하지 않은 혼합 분말과 대 조군인 anatase TiO₂ 나노 입자와 rutile TiO₂ 분말을 습식 혼합한 분말은 광촉매 특성이 더욱 감소하였으며, 특히 개 별 합성된 anatase TiO₂ 나노 입자와 rutile TiO₂ 분말을 습 식 혼합한 분말은 합성을 통해 제조된 혼합 분말들과 비 교하여 가장 낮은 광촉매 특성 즉, 메틸렌 블루 제거능을 가지는 것으로 확인되었다. 이러한 광촉매 특성의 차이는

Fig. 3. Schematic diagram on the effect of surfactant addition for rutile-anatase coupled TiO₂ powders synthesis.

Fig. 5. TEM images of (a) rutile-anatase mixed TiO_2 powders, (b) rutile-anatase coupled TiO_2 powders with surfactant of 1 g, and (c) High magnification image of the red dotted line of (b).

anatase TiO₂ 나노 입자의 분산도 차이와 rutile TiO₂ 분말 과의 결합에 차이를 보이기 때문인 것으로 판단되며, 결과 적으로 rutile TiO2 분말 표면에 형성된 anatase TiO2의 분 산과 상호 간의 계면 형성이 rutile TiO,의 전자-정공 재결 합을 억제하는데 도움을 주기 때문인 것으로 판단된다 [22]. 특히, 단순 습식 혼합한 분말에 비해 합성과 열처리 를 통해 제조된 혼합 분말의 경우에는 rutile TiO2 분말의 표면에 형성된 Ti(OH)4의 결정화를 위한 열처리 과정이 분말간의 계면 특성에 상당한 영향을 줄 수 있으므로 TEM을 이용하여 분말의 미세구조 및 계면을 관찰하였다. 그림 5는 대조군으로 적용된 rutile-anatase TiO2 혼합 분 말과 계면활성제를 1g 첨가하여 합성된 rutile-anatase coupled TiO₂ 분말의 TEM 이미지이다. 그림 5(a)의 anatase TiO₂ 나노 입자와 rutile TiO₂ 분말을 습식 혼합한 분말의 경우에는 약 20 nm 크기의 anatase TiO2 나노 입자 들이 서로 응집되어 있으며, 이웃한 rutile TiO₂ 분말과도 계면에서의 반응 없이 단순히 붙어있는 형태로 존재한다. 반면에 계면활성제를 이용하여 rutile TiO2 분말의 표면에 anatase TiO₂ 나노 입자를 합성한 rutile-anatase coupled TiO_2 분말의 경우(그림 5(b))에는 합성된 anatase TiO_2 나 노 입자들이 습식 혼합한 분말에 비해 비교적 균일하게 rutile TiO₂ 분말의 표면에 분산되어 있으며, 응집 또한 상 대적으로 적었다. 또한 그림 5(b)의 점선으로 표시된 영역 에 대한 고배율 이미지인 그림 5(c)와 같이 합성된 anatase TiO2 나노 입자가 전구체인 Ti(OH)4의 결정화를 위한 열 처리 과정에서 rutile TiO, 분말과 일부 소결되어 단순히 물리적으로 분산된 형태가 아닌 화학적인 결합을 형성하 고 습식 혼합된 분말에 비해 상대적으로 넓은 계면을 형 성하는 것으로 확인되었다. 두 분말 간의 계면 증가는 결 과적으로 전자의 이동을 수월하게 하므로 전자-정공의 재 결합을 억제하며, 이러한 차이들로 인해 rutile TiO, 분말 의 표면에 anatase TiO2 나노 입자를 합성한 혼합 분말이 단순히 혼합된 분말에 비해 향상된 광촉매 특성을 나타내 는 것으로 판단된다.

4. 결 론

본 연구에서는 rutile TiO_2 분말의 표면에 화학적인 방법 과 계면활성제를 사용하여 $Ti(OH)_4$ 를 석출시키고 이를 열 처리하여 anatase TiO_2 나노 입자가 표면에 분산되어 있는 rutile-anatase coupled TiO_2 분말을 제조하였다.

계면활성제의 첨가량과는 무관하게 모든 혼합 분말에서 anatase TiO₂ 상과 rutile TiO₂ 상이 확인되었다. anatase TiO, 나노 입자와 rutile TiO, 분말을 습식 혼합한 혼합 분 말의 경우에는 anatase TiO2 나노 입자들이 약 20 nm 크기 로 응집되어 존재하였으나 합성을 통해 제조된 rutileanatase coupled TiO, 분말은 상대적으로 응집이 억제되고 합성된 anatase TiO2 나노 입자가 rutile TiO2 분말의 표면 에 분산되어 존재하였다. 특히 계면활성제를 1g 첨가한 경우에는 계면활성제가 첨가되지 않은 분말에 비해 rutile TiO₂ 분말의 표면에 상대적으로 많은 양의 anatase TiO₂ 나노 입자가 균일하게 형성되었고, 계면활성제의 첨가량 이 증가함에 따라 부분적으로 수십 nm 크기로 응집된 anatase TiO, 나노 입자들이 존재하는 것으로 확인되었다. 또한 광촉매 특성을 분석한 결과 합성을 통해 제조된 rutile-anatase coupled TiO2 분말은 합성과정에서 rutile TiO₂ 분말의 표면에 형성된 Ti(OH)₄를 열처리하여 anatase TiO2로 만드는 과정에서 rutile TiO2 분말과 anatase TiO2 나노 입자 간에 일부 소결이 진행되어 anatase TiO2와 rutile TiO2이 화학적인 결합을 형성하고 이를 통해 상대적 으로 확장된 계면을 갖는 것을 확인하였으며, 결과적으로 계면활성제를 1g 첨가하여 제조된 rutile-anatase coupled TiO2 분말이 다른 혼합 분말들에 비해 가장 우수한 광촉 매 특성을 나타냈다.

감사의 글

이 연구는 서울과학기술대학교 교내연구비의 지원으로 수행되었습니다.

References

- J. A. Byrne, B. R. Eggins, N. M. D. Brown, B. Mckinney and M. Rouse: Appl. Catal. B, **17** (1998) 25.
- [2] Y. Ohko, I. Ando, C. Nia, T. Tatsuma, T. Yamamura, T. Nakashima and Y. Kubota: Environ. Sci. Technol., 35 (2001) 2365.
- [3] Z. Li, S. Cong and Y. Xu: ACS Catal., 4 (2014) 3273.
- [4] D. H. Lee, J. R. Park, C. G. Lee, K. S. Park and H. M. Kim: J. Korean Powder Metall. Inst., 23 (2016) 353.
- [5] I. C. Kang and I. C. Yeo: J. Korean Powder Metall. Inst., 20 (2013) 474.
- [6] J. Y. Kim, J. M. Byun, J. W. Kim and Y. D. Kim: J. Korean Powder Metall. Inst., 21 (2014) 119.
- [7] Y. Hwangbo and Y. I. Lee: J. Korean Powder Metall. Inst., 23 (2016) 307.
- [8] I. C. Yeo and I. C. Kang: J. Korean Powder Metall. Inst., 23 (2016) 458.
- [9] W. Zhao, W. Ma, C. Chen, J. Zhao and Z. Shuai: J. Am. Chem. Soc., **126** (2004) 4782.
- [10] P. Viswanalhamurthi, N. Bhauarai, C. K. Kim, H. Y. Kim and D. R. Lee: Inorg. Chem. Commun., 7 (2004) 679.
- [11] D. Li and Y. Xia: Nano Lett., 3 (2003) 555.
- [12] H. C. Kim and J. K. Han: J. Korean Powder Metall. Inst., 23 (2016) 33.

- [13] A. Mills and S. Hunte: J. Photochem. Photobiol. A Chem., 108 (1997) 1.
- [14] R. Vogel, P. Hoyer and H. Weller: J. Phys. Chem., 98 (1994) 3183.
- [15] T. Kawahara, Y. Ozawa, M. Iwasaki, H. Tada and S. Ito: J. Colloid Interface Sci., 267 (2003) 377.
- [16] H. Li, W. Zhang and W. Pan: J. Am. Ceram. Soc., 94 (2011) 3184.
- [17] O. Carp, C. L. Huisman and A. Reller: Prog. in Solid State Chem., **32** (2004) 33.
- [18] G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar and C. A. Grimes: Sol. Energy Mater. Sol. Cells, 90 (2006) 2011.
- [19] M. M. Joshi, N. K. Labhsetwar, P. A. Mangrulkar, S. N. Tijiare, S. P. Kamble and S. S. Rayalu: Appl. Catal. A, 357 (2009) 26.
- [20] R. Vogel, P. Hoyer and H. Weller: J. Phys. Chem., 98 (1994) 3183.
- [21] T. H. Wang, A. M. Navarrete-Lopez, S. Li and D. A. Dixon: J. Phys. Chem. A, **114** (2010) 7561.
- [22] D. Scanlon, C. Dunnill, J. Buckeridge, S. Shevlin, A. Logsdail, S.Woodley, R. Catlow, M. Powell, R. Palgrave, I. Parkin, G.Watson, T. Keal, P. Sherwood, A. Walsh and A. Sokol: Nat. Mater., **12** (2013) 798.