• Title/Summary/Keyword: $TiO_2$thin films

Search Result 1,283, Processing Time 0.043 seconds

Microstructures of Anatase TiO$_2$ Thin Films by Reactive Sputtering (반응성 스퍼터링법으로 제조된 anatase TiO$_2$박막의 미세조직에 관한 연구)

  • Choe, Yong-Rak;Kim, Seon-Hwa;Lee, Geon-Hwan
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.751-758
    • /
    • 2001
  • Anatase $TiO_2$ thin films as a photocatalyst were prepared by the D.C reactive magnetron sputtering process. The $TiO_2$ thin films were deposited on Si(100) substrates under the various conditions : oxygen partial pressure, working pressure, substrate temperature, D.C power, and deposition time. The morphology of the TiO$_2$ thin films showed an island structure. At early stages of film growth, amorphous phase formed. However, during the further growth, columnar crystalline $TiO_2$grains evolved. The crystallinity of the thin films depended on the oxygen partial pressure, the working pressure and the D.C. powers.

  • PDF

Thin Films for Environmental Application and Energy Devices

  • Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.91-91
    • /
    • 2012
  • We aim in synthesizing various functional thin films thinner than ~ 10 nm for environmental applications and photovoltaic devices. Atomic layer deposition is used for synthesizing inorganic thin films with a precise control of the film thickness. Several examples about application of our thin films for removing volatile organic compounds (VOC) will be highlighted, which are summarized in the below. 1) $TiO_2$ thin films prepared by ALD at low temperature ($<100^{\circ}C$) show high adsorption capacity for toluene. In combination with nanostructured templates, $TiO_2$ thin films can be used as building-block of high-performing VOC filter. 2) $TiO_2$ thin films on carbon fibers and nanodiamonds annealed at high temperatures are active for photocatalytic oxidation of VOCs, i.e. photocatalytic filter can be created by atomic layer deposition. 3) NiO can catalyze oxidation of toluene to $CO_2$ and $H_2O$ at $<300^{\circ}C$. $TiO_2$ thin films on NiO can reduce poisoning of NiO surfaces by reaction intermediates below $200^{\circ}C$. We also fabricated inverted organic solar cell based on ZnO electron collecting layers on ITO. $TiO_2$ thin films with a mean diameter less than 3 nm on ZnO can enhance photovoltaic performance by reducing electron-hole recombination on ZnO surfaces.

  • PDF

Synergistic Effect on the Photocatalytic Degradation of 2-Chlorophenol Using $TiO_2$Thin Films Doped with Some Transition Metals in Water

  • Jeong, O Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.11
    • /
    • pp.1183-1191
    • /
    • 2001
  • The metallorganic chemical vapor deposition (MOCVD) method has been used to prepare TiO2 thin films for the degradation of hazardous organic compounds, such as 2-chlorophenol (2-CP). The effect of supporting materials and metal doping on the photocatalytic activity of TiO2 thin films also has been studied. TiO2 thin films were coated onto various supporting materials, including stainless steel cloth(SS), quartz glass tube (QGT), and silica gel (SG). Transition metals, such as Pd(II), Pt(IV), Nd(III) and Fe(III), were doped onto TiO2 thin film. The results indicate that Nd(Ⅲ) doping improves the photodegradation of 2-CP. Among all supporting materials studied, SS(37 ${\mu}m)$ appears to be the best support. An optimal amount of doping material at 1.0 percent (w/w) of TiO2-substrate thin film gives the best photodegration of 2-CP.

Microstructure and Ferroelectric Properties of PZT Thin Films Deposited on various Interlayers by R.F. Magnetron Sputtering (R.F. Magnetron Sputtering으로 다양한 Interlayer 층위에 형성시킨 PZT 박막의 미세구조와 강유전 특성)

  • Park, Chul-Ho;Choi, Duck-Young;Son, Young-Guk
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.742-749
    • /
    • 2002
  • The PZT thin films werre deposited on Pt/Ti/$SiO_2$/Si substrate by R. F. magnetron sputtering with $Pb_{1.1}Zr_{0.53}Ti_{0.47}O_3$ target. When interlayers(PbO, $TiO_2$, PbO/$TiO_2$) were inserted between PZT and Pt, the crystallization of the PZT thin films was considerably improved and the processing temperature was lowered. Compared to the pure PZT thin films, dielectric constant, dielectric loss and polarization properties of PZT thin films with interlayers were considerably improved. From XPS depth profile analysis, it was confirmed that PZT thin films and interlayers existed independently. In particular, PZT thin films deposited on interlayer(PbO/$TiO_2$) showed the best dielectric property (${\varepsilon}_r$=414.94, tan${\delta}$=0.0241, Pr=22${\mu}C/cm^2$).

The Complexing Effect of $BaTiO_3\;for\;Bi_4Ti_3O_{12}$ on Layered Perovskite $Bi_4Ti_3O_{12}{\cdot}nBaTiO_3(n=1&2)$ Thin Films ($Bi_4Ti_3O_{12}{\cdot}nBaTiO_3(n=1&2)$ 박막에서 $Bi_4Ti_3O_{12}$ 에 대한 $BaTiO_3$의 복합효과)

  • 신정묵;고태경
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.11
    • /
    • pp.1130-1140
    • /
    • 1998
  • Thin films of $Bi_4Ti_3O_{12}\;nBaTiO_3(n=1&2)$ were prepared using sols erived Ba-Bi-Ti complex alkoxides. The sols were spin-cast onto $Pt/Ti/SiO_2/Si$ substrates and followed by pyrolysis for 1 hr at $620^{\circ}C,\;700^{\circ}C\;and\;750^{\circ}C$ In the thin films a pyrochlore phase seemed to be formed at a lower temperature and then tran-formed to the layered perovskite phase as the heating temperature increased. In the thin films pyrolyzed at formed to the layered perovskte phase as the heating temperature increased. In the films pyrolyzed at $750^{\circ}C$ the amount of $Bi_4Ti_3O_{12}{\cdot}BaTiO_3$ reached to 94% while $Bi_4Ti_3O_{12}{\cdot}BaTiO_3$ was 77% in composition. This result shows that the formation of the layered pervoskite phase becomes difficult as the amount of complexing $BaTiO_3$ increases. The microstructures and the electrical properties of the thin films were gen-erally improved with the incease of the heating temperature. However the presence of the pyrochlore phase could not be removed effectively. Our study showed that the electrical properties of $Bi_4Ti_3O_{12}{\cdot}BaTiO_3$ were pronouncedly improved with complexing with BaTiO3 when compared to those of $Bi_4Ti_3O_{12}$ while the presence of the pyrochlore phase was detrimental to the those of $Bi_4Ti_3O_{12}{\cdot}2BaTiO_3$.

  • PDF

Band Gap Tuning in Nanoporous TiO2-ZrO2 Hybrid Thin Films

  • Kim, Chang-Sik;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2333-2337
    • /
    • 2007
  • Nanoporous TiO2 and ZrO2 thin films were spin-coated using a surfactant-templated approach from Pluronic P123 (EO20PO70EO20) as the templating agent, titanium alkoxide (Ti(OC4H9)4) as the inorganic precursor, and butanol as a the solvent. The control of the electronic structure of TiO2 is crucial for its various applications. We found that the band gap of the hybrid nanoporous thin films can be easily tuned by adding an acetylacetonestabilized Zr(OC4H9)4 precursor to the precursor solution of Ti(OC4H9)4. Pores with a diameter of 5 nm-10 nm were randomly dispersed and partially connected to each other inside the films. TiO2 and ZrO2 thin films have an anatase structure and tetragonal structure, respectively, while the TiO2-ZrO2 hybrid film exhibited no crystallinity. The refractive index was significantly changed by varying the atomic ratio of titanium to zirconium. The band gap for the nanoporous TiO2 was estimated to 3.43 eV and that for the TiO2-ZrO2 hybrid film was 3.61 eV.

Optical Properties of $TiO_2$ Thin Films Prepared by Ion-beam Assisted Deposition (이온빔 보조 증착법에 의해 제작된 $TiO_2$ 박막의 광학적 특성)

  • 조현주;이홍순;황보창권;이민희;박대윤
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.9-17
    • /
    • 1994
  • Optical properties of $TiO_2$ thin films prepared by ion-beam assisted deposition(1BAD) were investigated. The result shows that the refractive index of IBAD TiOL thin films measured by an envelope method is closer to that of the corresponding bulk than that of conventionally deposited $TiO_2$ thin films and the packing density of IBAD $TiO_2$ thin films measured by a vacuum-to-air spectral shift of films increases drastically. The vacuum-to-air spectral shift of an IBAD $(TiO_2/SiO_2)$ multilayer interference filter was negligible as compared to that of a conventional interference filter and so the IBAD filter is denser and more stable optically than the conventional filter. Also it is observed that the IBAD and conventional $TiO_2$ thin films are stoichiometric and amorphous.

  • PDF

Humidity Sensing Characteristics of TiO2 Thin Films Fabricated by R.F.Sputtering Method (R.F.스퍼터링법에 의해 제작된 TiO2 박막의 습도감지특성)

  • You, Do-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.974-979
    • /
    • 2013
  • $TiO_2$ thin films are fabricated using R.F.sputtering method. $TiO_2$ thin films are coated on $Al_2O_3$ substrate printed IDE(interdigitated electrode). Impedance of thin films decreases according to increase relative humidity and it increases according to decrease measuring frequency. When substrate temperature is room temperature, impedance of thin films is from 45.68[MHz] to 37.76[MHz] within the limits from 30[%RH] to 75[%RH] at 1[kHz]. Whereas when substrate temperature is 100[$^{\circ}C$], impedance of thin films is from 692[kHz] to 539[kHz] within the limits from 30[%RH] to 75[%RH] at 1[kHz]. Impedance variation of thin films is bigger in low frequency regions than in high frequency regions. When substrate temperature is 100[$^{\circ}C$], impedance of thin films is lower than that of room temperature.

Characteristics of TiO2 Thin Films Fabricated by R.E, Magnetron Sputtering (R.F Magnetron Sputtering법으로 제조한 TiO2 박막의 특성)

  • Chu Y. H.;Choi D. K.
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.821-827
    • /
    • 2004
  • Titanium oxide thin films were prepared on Si(100) substrates by R.F. magnetron reactive sputtering at $30\sim200watt$ R.F power range, and annealed at $600^{\circ}C\sim800^{\circ}C$ for 1 hour. The properties of $TiO_2$ thin films were analyzed using x-ray, ${\alpha}-step$, ellipsometer, scanning electron microscopy, and FT-IR spectrometer. Upon in-situ depositions, the initial phase of $TiO_2$ thin film showed non-crystalline phase at R.F. power $30\sim100$ watt. The crosssection of $TiO_2$ thin films were sbserved to be the columnar structure. With the increasing R.F power and annealing temperature, the grain size, crystallinity, refractive index, and void size of titanium oxides showed a tended to increase. The FT-IR transmittance spectra of titanium oxide thin films have the obsorption band of Ti-O bond, Si-O bond, Si-O-Ti bond and O-H bond. With the increase of R.F. power and annealing temperature, these films have the stronger bond structures. It is considered that such a phenomena is due to phase transition and good crystallinity

Self-cleaning Properties of TiO2-SiO2-In2O3 Nanocomposite Thin Film

  • Eshaghi, Akbar;Eshaghi, Ameneh
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3991-3995
    • /
    • 2011
  • $TiO_2-SiO_2-In_2O_3$ nanocomposite thin film was deposited on the glass substrates using a dip coating technique. The morphology, surface composition, surface hydroxyl groups, photocatalytic activity and hydrophilic properties of the thin film were investigated by AFM, XPS, methyl orange decoloring rate and water contact angle measurements. The hydroxyl content for $TiO_2$, $TiO_2-SiO_2$ and $TiO_2-SiO_2-In_2O_3$ nanocomposite films was calculated to be 11.6, 17.1 and 20.7%, respectively. $TiO_2-SiO_2-In_2O_3$ film turned superhydrophilic after 180-min irradiation with respect to pure $TiO_2$ and $TiO_2-SiO_2$ thin films. The photocatalytic decomposition of methyl orange for $TiO_2$, $TiO_2-SiO_2$ and $TiO_2-SiO_2-In_2O_3$ thin films was measured as 38.19, 58.71 and 68.02%, respectively. The results indicated that $SiO_2$ and $In_2O_3$ had a significant effect on the hydrophilic, photocatalytic and self-cleaning properties of $TiO_2$ thin film.