• Title/Summary/Keyword: $TiO_2$thin film

Search Result 1,091, Processing Time 0.027 seconds

Effects of Deposition Temperature and Annealing Process on PZT Thin Films Prepared by Pulsed Laser Deposition

  • Kim, Min-Chul;Choi, Ji-Won;Kang, Chong-Yun;Yoon, Seok-Jin;Kim, Hyun-Jai;Yoon, Ki-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.14-17
    • /
    • 2002
  • The effects of substrate temperatures and annealing temperatures on the microstructures and ferroelectric properties of PbZ $r_{0.52}$ $Ti_{0.48}$ $O_3$(PZT) thin fims prepared by pulsed laser deposition (PLD) were investigated. For this purpose, the PZT films were deposited at various substrate temperatures (400~$600^{\circ}C$) with post annealing process in oxygen atmosphere. The single perovskite phase was formed at the deposition temperature of 500 to 55$0^{\circ}C$ without post annealing and the PZT films deposited below 50$0^{\circ}C$ formed the single phase with post annealing at $650^{\circ}C$. The grain size of the films increased and the grain boundary of the films was clearly defined as the substrate temperature increased from 400 to 55$0^{\circ}C$. The remnant polarization (Pr) and the coercive field (Ec) of the films deposited at 55$0^{\circ}C$ and annealed at $650^{\circ}C$ were 34.3 $\mu$C/c $m^2$and 60.2 kV/cm, respectively.y.y.

Fabrication of PLT target and thin film formation by rf-magnetron sputtering method ($PLT(Pb_{1-x}La_{x})Ti_{1-x/4}O_{3}$ 타켓의 제조 및 rf-magnetron sputtering법으로 박막 형성)

  • Jung, J.M.;Cho, S.H.;Park, S.G.;Choi, S.Y.;Kim, K.W.
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.56-62
    • /
    • 1997
  • Using a rf-magnetron sputtering method, highly c-axis oriented La modified $PbTiO_{3}$ (PLT) ferroelectric thin films with compositions of $(Pb_{1-x}La_{x})Ti_{1-x/4}O_{3}$, where x=0.05, x=0 and x=0.15, have been obtained on (100)MgO single crystal substrate under conditions of low gas pressure. The degree of c-axis orientation of PLT films decreases with increasing gas pressure and with increasing La contant. These films were characterized by X-ray diffraction and SEM. PLT thin films of x=0.05, 0.1 and 0.15 show a low dielectric constant of 218, 246 and 361 at 1 kHz and remanent polarization(Pr) of $9{\mu}C/cm^{2}$, $8{\mu}C/cm^{2}$ and $7{\mu}C/cm^{2}$.

  • PDF

Fully Room Temperature fabricated $TaO_x$ Thin Film for Non-volatile Memory

  • Choi, Sun-Young;Kim, Sang-Sig;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • Resistance random access memory (ReRAM) is a promising candidate for next-generation nonvolatile memory because of its advantageous qualities such as simple structure, superior scalability, fast switching speed, low-power operation, and nondestructive readout. We investigated the resistive switching behavior of tantalum oxide that has been widely used in dynamic random access memories (DRAM) in the present semiconductor industry. As a result, it possesses full compatibility with the entrenched complementary metal-oxide-semiconductor processes. According to previous studies, TiN is a good oxygen reservoir. The TiN top electrode possesses the specific properties to control and modulate oxygen ion reproductively, which results in excellent resistive switching characteristics. This study presents fully room temperature fabricated the TiN/$TaO_x$/Pt devices and their electrical properties for nonvolatile memory application. In addition, we investigated the TiN electrode dependence of the electrical properties in $TaO_x$ memory devices. The devices exhibited a low operation voltage of 0.6 V as well as good endurance up to $10^5$ cycles. Moreover, the benefits of high devise yield multilevel storage possibility make them promising in the next generation nonvolatile memory applications.

  • PDF

NiO(Co0.25Mn0.75)2O3 and BaSrTiO3 thick films on alumina substrate as temperature and humidity ceramic multisensors

  • Oh, Young-Jei;Lee, Deuk-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.343-348
    • /
    • 2009
  • $NiO{\cdot}(Co_{0.25}Mn_{0.75})_2O_3$(Mn-Ni-Co) and $Ba_{0.5}Sr_{0.5}TiO_3$(BST) thick films were screen printed on Pt patterned alumina substrate to investigate the effects of sintering temperature on humidity and temperature sensing properties of ceramic sensors. A raise in sintering temperature increased resistance and B constant of the Mn-Ni-Co temperature sensor. This may have derived from the synergic effects of the reduction in charge carriers caused by the substitution of Co for Mn as well as the formation of microcracks from the difference in thermal expansion coefficients. Dependence of resistance on humidity of the Mn-Ni-Co temperature sensor, however, was not found. BST films sintered at temperatures in the range of $1100^{\circ}C$ to $1150^{\circ}C$ showed excellent humidity sensing properties. The BST humidity sensor was faster in its response than the Mn-Ni-Co temperature sensor. The humidity sensor, however, proved to be unstable under various temperatures, suggesting a need for a temperature stabilizing device. In contrast, the Mn-Ni-Co temperature sensor was stable under humid conditions.

Development of Eco-Friendly Ag Embedded Peroxo Titanium Complex Solution Based Thin Film and Electrical Behaviors of Res is tive Random Access Memory

  • Won Jin Kim;Jinho Lee;Ryun Na Kim;Donghee Lee;Woo-Byoung Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.152-162
    • /
    • 2024
  • In this study, we introduce a novel TiN/Ag embedded TiO2/FTO resistive random-access memory (RRAM) device. This distinctive device was fabricated using an environmentally sustainable, solution-based thin film manufacturing process. Utilizing the peroxo titanium complex (PTC) method, we successfully incorporated Ag precursors into the device architecture, markedly enhancing its performance. This innovative approach effectively mitigates the random filament formation typically observed in RRAM devices, and leverages the seed effect to guide filament growth. As a result, the device demonstrates switching behavior at substantially reduced voltage and current levels, heralding a new era of low-power RRAM operation. The changes occurring within the insulator depending on Ag contents were confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Additionally, we confirmed the correlation between Ag and oxygen vacancies (Vo). The current-voltage (I-V) curves obtained suggest that as the Ag content increases there is a change in the operating mechanism, from the space charge limited conduction (SCLC) model to ionic conduction mechanism. We propose a new filament model based on changes in filament configuration and the change in conduction mechanisms. Further, we propose a novel filament model that encapsulates this shift in conduction behavior. This model illustrates how introducing Ag alters the filament configuration within the device, leading to a more efficient and controlled resistive switching process.

The characterization of a barrier against Cu diffusion by C-V measurement (C-V 측정에 의한 Cu 확산방지막 특성 평가)

  • 이승윤;라사균;이원준;김동원;박종욱
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.333-340
    • /
    • 1996
  • The properties of TiN as a barrier against Cu diffusion ere studied by sheet resistance measurement, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and capacitance-voltage(C-V) measurement. The sensitivities of the various methods were compared. Specimens with Cu/TiN/Ti/SiO2/Si structure were prepared by various deposition techniques and annealed at various temperatures ranging from $500^{\circ}C$ to $800^{\circ}C$ in 10%H2/90%Ar ambient for hours. As the effectiveness of the barrier property of TiN against Cu diffusion was vanished, the irregular-shaped sports were observed and outdiffused Si were detected on the surface of the Cu thin film. The C-V characteristics of the MOS capacitors varied drastically with annealing temperatures. In C-V measurement, the inversion capacitance decreased at annealing temperature range from $500^{\circ}C$ to $700^{\circ}C$ and increased remarkably at $800^{\circ}C$. These variations may be due to the Cu diffusion through TiN into $SiO_2$ and Si.

  • PDF

A study on the Improvement of Ferroeletric Characteristics of PZT thin film for FRAM Device (FRAM 소자용 PZT박막의 강유전특성에 관한 연구)

  • Lee, B.S;Chung, M.Y.;Shin, P.K.;Lee, D.C.;Lee, S.H.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1881-1883
    • /
    • 2005
  • In this study, PZT thin films were fabricated using sol-gel Processing onto $Si/SiO_2/Ti/Pt$ substrates. PZT sol with different Zr/Ti ratio(20/80, 30/70, 40/60, 52/48) were prepared, respectively. The films were fabricated by using the spin-coating method on substrates. The films were heat treated at $450^{\circ}C$, $650^{\circ}C$ by rapid thermal annealing(RTA). The preferred orientation of the PZT thin films were observed by X-ray diffraction(XRD), and Scanning electron microscopy(SEM). All of the resulting PZT thin films were crystallized with perovskite phase. The fine crystallinity of the films were fabricated. Also, we found that the ferroelectric properties from the dielectric constant of the PZT thin films were over 600 degrees, P-E hysteresis constant. And the leakage current densities of films were lower than $10^{-8}\;A/cm^2$. It is concluded that the PZT thin films by sol-gel process to be convinced of application for ferroelectric memory device.

  • PDF

Optical Study of BaSm2Ti4O12 by Vacuum Ultra Violet Spectroscopic Ellipsometry (Vacuum Ultra Violet Spectroscopic Ellipsometry를 이용한 BaSm2Ti4O12의 광 특성 연구)

  • Hwang, S.Y.;Yoon, J.J.;Jung, Y.W.;Byun, J.S.;Kim, Y.D.;Jeong, Y.H.;Nahm, S.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.60-65
    • /
    • 2009
  • We performed a study on optical properties of $BaSm_2Ti_4O_{12}$ thin films by vacuum ultra violet spectroscopic ellipsometry in the $0.92{\sim}8.6\;eV$ energy range. For the analysis of the measured ellipsometric spectra, a 5-layer model was applied where optical property of the $BaSm_2Ti_4O_{12}$ layer was well represented by a Tauc-Lorentz dispersion function. Our analysis clearly showed new structure in high energy region at about 7.5 eV Consistent changes of refractive index & extinction coefficient of the $BaSm_2Ti_4O_{12}$ thin film by the growth and annealing temperatures were also confirmed.

A Study on the Development of Thin Film Type Humidity Sensor Materials by Sol-Gel Method(II) (졸겔법에 의한 박막형 습도센서 소제개발에 관한 연구(II))

  • You, D.H.;Kang, D.H.;Na, D.K.;Hwang, M.W.;Yuk, J.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1472-1474
    • /
    • 1994
  • In this paper, $TiO_2-V_2O_5$ thin films are fabricated by Sol-Gel method and their humidity-sensing characteristics have been investigated. The microstructure of specimen is porous. The humidity-sensing characteristics of thin films are good according to increasing heat treatment temperature and decreasing measurement frequency.

  • PDF

Dielectric and Electric Properties of Nb Doped PZT Thin Films by Sol-gel Technique (솔-젤법으로 제조한 PZT 박막의 Nb 첨가에 따른 유전 및 전기적 특성)

  • 김창욱;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.10
    • /
    • pp.1101-1108
    • /
    • 1996
  • No-doped PZT thin films have been fabricated on Pt/Ti/SiO2/Si substrate using Sol-Gel technique. A fast annealing metho (three times of intermediate and final annealing) was used for the preparation of multi-coated 1800$\AA$ thick Nb-doped PZT thin films. As Nb doping percent was increased leakage current was lowered approximately 2 order but dielectic properties were degraded due to the appearance of pyrochlore phase and domain pinning. Futhermore the increase of the final annealing temperature up to 74$0^{\circ}C$lowered the pyrochlore phase content resulting in enhancing the dielectric properties of the Nb doped films. The 3%-Nb doped PZT thin films with 5% excess Pb showed a capacitance density of 24.04 fF/${\mu}{\textrm}{m}$2 a dielectric loss of 0.13 a switchable polarization of 15.84 $\mu$C/cm2 and a coercive field of 32.7 kV/cm respectively. The leakage current density of the film was as low as 1.47$\times$10-7 A/cm2 at the applied voltage of 1.5 V.

  • PDF