• Title/Summary/Keyword: $TiO_2$ photodegradation

Search Result 112, Processing Time 0.023 seconds

Degradation and mineralization of violet-3B dye using C-N-codoped TiO2 photocatalyst

  • Putri, Reza Audina;Safni, Safni;Jamarun, Novesar;Septiani, Upita;Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.529-535
    • /
    • 2020
  • The present study investigated the photodegradation of synthetic organic dye; violet-3B, without and with the addition of C-N-codoped TiO2 catalyst using a visible halogen-lamp as a light source. The catalyst was synthesized by using a peroxo sol-gel method with free-organic solvent. The effects of initial dye concentration, catalyst dosage, and pH solution on the photodegradation of violet-3B were examined. The efficiency of the photodegradation process for violet-3B dye was higher at neutral to less acidic pH. The kinetics reaction rate of photodegradation of violet-3B dye with the addition of C-N-codoped TiO2 followed pseudo-first order kinetics represented by the Langmuir-Hinshelwood model, and increasing the initial concentration of dyes decreased rate constants of photodegradation. Photodegradation of 5 mg L-1 violet-3B dye achieved 96% color removal within 240 min of irradiation in the presence of C-N-codoped TiO2 catalyst, and approximately 44% TOC was removed as a result of the mineralization.

Promoting Effect of MgO in the Photodegradation of Methylene Blue Over MgO/MWCNT/TiO2 Photocatalyst

  • Chen, Ming-Liang;Zhang, Feng-Jun;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.20 no.7
    • /
    • pp.345-350
    • /
    • 2010
  • For the present paper, we prepared MgO/MWCNT/$TiO_2$ photocatalyst by using multi-walled carbon nanotubes (MWCNTs) pre-oxidized by m-chlorperbenzoic acid (MCPBA) with magnesium acetate tetrahydrate $(Mg(CH_2COO)_2\cdot4H_2O)$ and titanium n-butoxide $(Ti\{OC(CH_3)_3\}_4)$ as magnesium and titanium precursors. The prepared photocatalyst was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. The decomposition of methylene blue (MB) solution was determined under irradiation of ultraviolet (UV) light. The XRD results show that the MgO/MWCNT/$TiO_2$ photocatalyst have cubic MgO structure and anatase $TiO_2$ structure. The porous structure and the $TiO_2$ agglomerate coated on the MgO/MWCNT composite can be observed in SEM images. The Mg, O, Ti and C elements can be also observed in MgO/MWCNT/$TiO_2$ photocatalyst from EDX results. The results of photodegradation of MB solution under UV light show that the concentration of MB solution decreased with an increase of UV irradiation time for all of the samples. Also, the MgO/MWCNT/$TiO_2$ photocatalyst has the best photocatalytic activity among these samples. It can be considered that the MgO/MWCNT/$TiO_2$ photocatalyst had a combined effect, the effect of MWCNT, which could absorb UV light to create photoinduced electrons $(e^-)$, and the electron trapping effect of MgO, which resulted in an increase of the photocatalytic activity of $TiO_2$.

Structural, Optical and Photocatalyst Property of Copper-doped TiO2 Thin Films by RF Magnetron Co-sputtering (동시 스퍼터링법을 이용하여 Cu 도핑한 TiO2 박막의 구조적, 광학적 및 광분해 특성)

  • Heo, Min-Chan;Hong, Hyun-Joo;Hahn, Sung-Hong;Kim, Eui-Jung;Lee, Chung-Woo;Joo, Jong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.1
    • /
    • pp.104-109
    • /
    • 2006
  • Cu-doped $TiO_2$ thin films were prepared by RF magnetron co-sputtering, and their structural, optical and photodegradation. properties were examined as a function of calcination temperature. XRD results showed that the crystallite size of Cu/$TiO_2$ thin films was bigger than that of the pure $TiO_2$ thin films. SEM results revealed that the agglomerated particle size of the Cu/$TiO_2$ films was more uniform and smaller than that of pure $TiO_2$ films. The absorption edge of thin films calcined at $900^{\circ}C$ was red shifted, resulting from the phase transformation from anatase to rutile phase, and the transmittance of the thin film rapidly decreased due to an increase in particle size. The photodegradation properties of the Cu/$TiO_2$ thin films were superior to those of the pure $TiO_2$ thin films.

Photodegradation of Gaseous Toluene Using Short-Wavelength UV/TiO2 and Treatment of Decomposition Products by Wet Scrubber (단파장자외선/TiO2 공정에 의한 가스상 톨루엔의 분해 및 습식세정장치에 의한 분해생성물의 제거)

  • Jeong, Ju-Young;Jurng, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.16 no.4
    • /
    • pp.433-440
    • /
    • 2007
  • The photodegradation and by-products of the gaseous toluene with $TiO_2$ (P25) and short-wavelength UV ($UV_{254+185nm}$) radiation were studied. The toluene was decomposed and mineralized efficiently owed to the synergistic effect of photochemical oxidation in the gas phase and photocatalytic oxidation on the $TiO_2$ surface. The toluene by the $UV_{254+185nm}$ photoirradiated $TiO_2$ were mainly mineralized $CO_2$ and CO, but some water-soluble organic intermediates were also formed under severe reaction conditions. The ozone and secondary organic aerosol were produced as undesirable by-products. It was found that wet scrubber was useful as post-treatment to remove water-soluble organic intermediates. Excess ozone could be easily removed by means of a $MnO_2$ ozone-decomposition catalyst. It was also observed that the $MnO_2$ catalyst could decompose organic compounds by using oxygen reactive species formed in process of ozone decomposition.

Manufacturing and Characterization of N-doped TiO2 Photocatalytic Thin Film (N 도핑된 TiO2 광촉매 박막의 제조 및 특성분석)

  • Park, Sang-Won;Nam, Soo-Kyung;Heo, Jae-Eun
    • Journal of Environmental Science International
    • /
    • v.16 no.6
    • /
    • pp.683-688
    • /
    • 2007
  • In this study, N doped $TiO_2$ (TiO-N) thin film was prepared by DC magnetron sputtering method to show the photocatalytic activity in a visible range. Various gases (Ar, $O_2\;and\;N_2$) were used and Ti target was impressed by 1.2 kW -5.8 kW power range. The hysteresis of TiO-N thin film as a function of discharge voltage wasn't observed in 1.2 and 2.9kW of applied power. Cross sections and surfaces of thin films by FE-SEM were tiny and dense particle sizes of both films with normal cylindrical structures. XRD pattern of $TiO_2$ and TiO-N thin films was appeared by only anatase peak. Red shift in UV-Vis adsorption spectra was investigated TiO-N thin film. Photoactivity was evaluated by removal rate measurement of suncion yellow among reactive dyes. The photodegradation rate of $TiO_2$ thin film on visible radiation was shown little efficiency but TiO-N was about 18%.

Preparation of $TiO_2$-Coated Polypropylene Beads by PCVD Process for Phenol Removal

  • Pham, Hung-Cuong;Kim, Dong-Joo;Kim, Kyo-Seon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.185-185
    • /
    • 2009
  • Polypropylene beads (PP) coated with $TiO_2$ thin films were prepared by a rotating cylindrical plasma chemical vapor deposition (PCVD) reactor and were used to remove phenol in aqueous solution. The $TiO_2$ thin films of 416 nm thickness were coated on the PP particles uniformly. As the number of $TiO_2$-coated PP beads increases, the phenol is degraded faster, because of larger total surface area of photocatalysts for photodegradation. This study shows that a rotating cylindrical PCVD reactor can be a good method to prepare the particles coated with high-quality $TiO_2$ thin films, which can be applied to the pollutant removal by a photodegradation reaction of $TiO_2$ with high efficiency.

  • PDF

Photocatalytic Degradation of Quinol and Blue FFS Acid Using TiO2 and Doped TiO2

  • Padmini., E.;Prakash, Singh K.;Miranda, Lima Rose
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.332-335
    • /
    • 2010
  • The photodegradation of the model compounds Quinol, an aromatic organic compound and Acid blue FFS, an acid dye of chemical class Triphenylmethane was studied by using illumination with UV lamp of light intensity 250W. $TiO_2$ and $TiO_2$ doped with Boron and Nitrogen was used as catalyst. The sol-gel method was followed with titanium isopropoxide as precursor and doping was done using Boron and Nitrogen. In photocatalytic degradation, $TiO_2$ and doped $TiO_2$ dosage, UV illumination time and initial concentration of the compounds were changed and examined in order to determine the optimal experimental conditions. Operational time was optimized for 360 min. The optimum dosage of $TiO_2$ and BN doped $TiO_2$ was obtained to be 2 $mgL^{-1}$ and 2.5 $mgL^{-1}$ respectively. Maximum degradation % for quinol and Blue FFS acid dye was 78 and 95 respectively, at the optimum dosage of BN-doped $TiO_2$ catalyst. It was 10 and 4% higher than when undoped $TiO_2$ catalyst was used.

Effects of TiO$_2$ Photodegradation on Leaching from Epoxy Resin Chemical in Water and Biological Toxicity (수용액에 용출된 에폭시수지 화합물의 TiO$_2$ 광분해효과와 생물독성에 미치는 영향)

  • Yeo Min Kyeong;Cho Eun Joung
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.3
    • /
    • pp.271-278
    • /
    • 2004
  • Epoxy resins are mostly used as a molding material for drinking water tank. Bisphenol A is used at a constituent material for epoxy resins and is widely suspected to act as an endocrine disrupter. In this study, we investigated embryo hatching in zebrafish reared in water undergone leaching process of expoxy resin, and found a decreased survival rate. Bisphenol A eluted from epoxy resin in drinking water tank was completely degraded by TiO$_2$ photocatalysis. We detected 7.8 ng/ml of bisphenol A in epoxy resin tank, and observed that the concentration was undetectable after 48h photocatalysis over TiO$_2$. There was no toxicity in hatching rates in zebrafish and morphogenesis after photocatalysis. The effect of TiO$_2$ photocatalytic reactions on the catalase activities in the f]y stage of zebrafish was also examined. At 1 week post hatching, cataiase activities were higher both in the group of epoxy resin with 48 h TiO$_2$ photocatalysis and in the TiO$_2$ photocatalysis for 48 hours were higher than control group. However catalase activities of the treatment group of epoxy resin by TiO$_2$ photocatalysis for 48 hours were similar to control in 5 weeks post hatching fries. In conclusion, the toxicity of TiO$_2$ photocatalysis was not observed in this zebrafish.

Characteristic of Photodegradation of MTBE Using TiO2/UV Process (TiO2/UV공정을 이용한 수중 MTBE의 광분해 특성)

  • Ryu, Seong Pil;Kim, Seong Su;O, Yun Geun
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.289-295
    • /
    • 2004
  • The objective of this study is to delineate removal efficiency of the MTBE in solution by $TiO_2$ photocatalytic degradation as a function of the following different experimental conditions: Initial concentration of MTBE, air flow rate in solution, $H_2O_2$ dosage and pH of the solution. Photodegradation rate was increased with decreasing initial concentration of MTBE. The removal efficiency was 82% after 180 min in the case of MTBE concentration of 100 mg/L but 100% after 180 min in the case of 20 mg/L. Removal efficiency was increased with increasing pH, $H_2O_2$ dosage and air flow rate in solution.

Photocatalytic Degradation of Methylene Blue using $TiO_2$ Supported on Activated Carbon (TiO$_2$가 담지된 활성탄을 이용한 Methylene Blue의 광분해)

  • Lee, Jong-Dae;Lee, Tae-Jun;Cho, Kyong-Tae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.153-159
    • /
    • 2006
  • The photocatalytic degradation of methylene blue(MB) was investigated using $TiO_2$ as photocatalyst and UV radiation. $TiO_2$ supported with activated carbon(AC) was prepared by SOL-GEL method and depended on several parameters such as the mass ratio of $TiO_2/AC$, pH and experimental time. The presence of the anatase and rutile crystal phase was determined by XRD analyses of the prepared $TiO_2$. The degradation of MB with $TiO_2/AC$ was about 20% higher than that of AC alone. A variation of photodegradation was negligible under UV radiation conditions ( ${\geq}$ 40W). It was experimentally showed that the photodegradation rate was increased with increasing the amount of photocatalyst. The optimal catalyst was prepared by impregmation of $5wt%-TiO_2$ with AC and was calcined at $300^{\circ}C$, and showed about 99% removal efficiency for 3hrs.