• Title/Summary/Keyword: $TiO_2$ nanorod

Search Result 27, Processing Time 0.035 seconds

Development of templated RuO2 nanorod and nanosheet electrodes to improve the electrocatalytic activities for chlorine evolution (전기적 염소 발생 촉매활성을 위한 성형된 루테늄 산화물 나노로드와 나노시트 전극의 개발)

  • Luu, Tran Le;Kim, Choonsoo;Yoon, Jeyong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.373-381
    • /
    • 2017
  • $RuO_2$ is a common active component of Dimensionally Stable Anodes (DSAs) for chlorine evolution that can be used in wastewater treatment systems. The recent improvement of chlorine evolution using nanostructures of $RuO_2$ electrodes to increase the treatment efficiency and reduce the energy consumption of this process has received much attention. In this study, $RuO_2$ nanorod and nanosheet electrodes were simply fabricated using the sol-gel method with organic surfactants as the templates. The obtained $RuO_2$ nanorod and nanosheet electrodes exhibit enhanced electrocatalytic activities for chlorine evolution possibly due to the active surface areas, especially the outer active surface areas, which are attributed to the increase in mass transfers compared with a conventional nanograin electrode. The electrocatalytic activities for chlorine evolution were increased up to 20 % in the case of the nanorod electrode and 35% in the case of the nanosheet electrode compared with the nanograin electrode. The $RuO_2$ nanorod 80 nm in length and 20-30 nm in width and the $RuO_2$ nanosheet 40-60 nm in length and 40 nm in width are formed on the surface of Ti substrates. These results support that the templated $RuO_2$ nanorod and nanosheet electrodes are promising anode materials for chlorine evolution in future applications.

Characterization of Working Electrode Using by Hydrothermal and Electrophoretic Deposition for Dye Sensitized Solar Cells

  • Gong, Jae-Seok;Choe, Yun-Su;Park, Min-Ho;Jeong, Su-Chang;Choe, Hyeon-Gwang;Jeon, Min-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.308-308
    • /
    • 2013
  • 본 연구에 염료감응형 태양전지(Dye Sensitized Solar Cells; DSSCs)의 광전변환효율을 높이기 위해 작업전극에 새로운 구조의 광투과층 및 산란층을 도입하였다. DSSCs 작업전극의 빛을 투과시키는 투과층에 크기가 10 nm 이하의 nanoparticle $TiO_2$를 적용하고, 투과된 빛이 산란되어 많은 전자가 여기 될 수 있도록 기존의 큰 입자 사이즈였던 산란층을 이용하는 대신 $TiO_2$ nanorod 및 nanotube 형태의 구조를 도입하여 기존의 작업전극과 비교하였다. 산란층에서 방향성을 가지는 rutile 상의 $TiO_2$는 저온에서 안정적인 anatase 상의 $TiO_2$보다 화학적으로 안정하며, 높은 산란율을 가지고, 광에 의해 여기된 전자를 직접적으로 집전전극에 전달해 줌으로서 소자의 효율을 증가시킨다고 보고되고 있다. Rutile 상의 $TiO_2$ 층 제작 시 수열합성법을 이용하면 nanorod 모양의 $TiO_2$층을 형성할 수 있고, 이와 같은 방법으로 성장시킨 산란층에 전기영동법의 식각 효과를 사용하면 nanotube 모양의 $TiO_2$층을 성장시킬 수 있어 산란효과의 극대화 및 전극의 표면적을 넓히는 장점이 있다. 각각의 방법을 이용하여 만든 구조 위에 입자 크기 10 nm의 $TiO_2$를 Dr blade 방법으로 도포하여 double layer (산란층+흡수층)로 구성된 작업 전극을 이용한 DSSCs를 제작한 후 I-V curve와 EIS (Electrochemical Impedance Spectroscopy)를 측정하여 효율 및 전기화학적 특성을 분석하였다.

  • PDF

Hydrogen production by anodized $TiO_2$ nanotube under UV light irradiation (양극 산화된 $TiO_2$ nanotube를 이용한 수소 생산 연구)

  • Hong, Won-Sung;Park, Jong-Hyeok;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.495-498
    • /
    • 2008
  • Photocatalytic water splitting into $H_2$ and $O_2$ using semiconductors has received much attention, especially for its potential application to direct production of $H_2$ for clean energy from water utilizing solar light energy. Since the report of Fujishima and Honda on the water splitting by photoelectrochemical cells, numerous different semiconducting materials have been used as photocatalysts for hydrogen generation from water. Among them, platinized titania significantly accelerates hydrogen production from water. For geometrical improvement of $TiO_2$ particle, porous $TiO_2$ structure was proposed and studied such as nanofiber, nanorod and nototubes. This research focuses on finding out the optimum temperature and electrolyte to produce $H_2$ by solar water splitting.

  • PDF

Performances and Electrical Properties of Vertically Aligned Nanorod Perovskite Solar Cell

  • Kwon, Hyeok-Chan;Kim, Areum;Lee, Hongseuk;Lee, Eunsong;Ma, Sunihl;Lee, Yung;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.429-429
    • /
    • 2016
  • Organolead halide perovskite have attracted much attention over the past three years as the third generation photovoltaic due to simple fabrication process via solution process and their great photovoltaic properties. Many structures such as mesoporous scaffold, planar heterojunction or 1-D TiO2 or ZnO nanorod array structures have been studied to enhance performances. And the photovoltaic performances and carrier transport properties were studied depending on the cell structures and shape of perovskite film. For example, the perovskite cell based on TiO2/ZnO nanorod electron transport materials showed higher electron mobility than the mesoporous structured semiconductor layer due to 1-D direct pathway for electron transport. However, the reason for enhanced performance was not fully understood whether either the shape of perovskite or the structure of TiO2/ZnO nanorod scaffold play a dominant role. In this regard, for a clear understanding of the shape/structure of perovskite layer, we applied anodized aluminum oxide material which is good candidate as the inactive scaffold that does not influence the charge transport. We fabricated vertical one dimensional (1-D) nanostructured methylammonium lead mixed halide perovskite (CH3NH3PbI3-xClx) solar cell by infiltrating perovskite in the pore of anodized aluminum oxide (AAO). AAO template, one of the common nanostructured materials with one dimensional pore and controllable pore diameters, was successfully fabricated by anodizing and widening of the thermally evaporated Al film on the compact TiO2 layer. Using AAO as a scaffold for perovskite, we obtained 1-D shaped perovskite absorber, and over 15% photo conversion efficiency was obtained. I-V measurement, photoluminescence, impedance, and time-limited current collection were performed to determine vertically arrayed 1-D perovskite solar cells shaped in comparison with planar heterojunction and mesoporous alumina structured solar cells. Our findings lead to reveal the influence of the shape of perovskite layer on photoelectrical properties.

  • PDF

Effects of the TiO2 nanostructures for water purification in optofluidic microreactor (TiO2 광촉매 나노구조에 따른 광유체 미세반응기 정수 효과)

  • Hyunah, Kwon;Hyejeong, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.42-48
    • /
    • 2022
  • The shortage of available freshwater is a major global issue worldwide and an increasing demand for clean water requires efficient water purification strategies. Here we describe a method to drastically increase the efficiency of a microreactor for photocatalytic water purification. To find out how the shape of the catalyst affects water purification, nanostructured catalysts of different structures, such as dense film, nanorod, and nanohelix, are prepared and their water purification characteristics are analyzed. Compared to the flat catalyst, the nanostructured catalyst showed a distinct ability in its pollutant degradation, but the detailed structural variation does not significantly affect the water purification. To further increase efficiency, we apply a micromixer to nanorod-based microreactor, which allows even enhanced mass transfer. This enables the solution of the water purification problem and greatly contributes to the industries where the efficiency of photocatalytic activity has attracted extensive interest.

Photocurrent Properties of TiO2 Nanorods Grown on FTO by Hydrothermal Method

  • Kim, Hyun;Yang, Bee Lyong
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.531-534
    • /
    • 2015
  • In this work, we undertake a comparative study of the crystallographic microstructures and photo-catalytic properties of rutile $TiO_2$ nanorods grown on FTO facing up and down by a hydrothermal method. An analysis of the fine structures showed that $TiO_2$ nanorods grown on FTO facing up were mixed with sea urchin and microsphere. These structures induced a vertical orientation of the nanorods on FTO. The saturated photocurrent densities of the $TiO_2$ nanorods grown both up and down were $1.5mA/cm^2$ in the former case, the IPCE was increased to 10% at 300~350 nm. The onset potential (${\fallingdotseq}$ flat band potential) of the nanorods grown on FTO facing up is negatively shifted to a value of -0.31 V. This is caused by an increase in the surface state, in this case the number of oxygen vacancies, and by the formation of $Ti^{3+}$. Therefore, the FTO facing direction is considered as a critical factor during the hydrothermal reaction for $TiO_2$ growth so as to develop an efficient photo-catalytic system.

Electrospun TiO2 Electrodes for Quasi-Solid State Dye- sensitizedSolar Cell

  • Song, Mi-Yeon;Ahn, Young-Rack;Jo, Seong-Mu;Kim, Dong-Young
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.65-66
    • /
    • 2006
  • [ $TiO_2$ ] single crystalline nanorods are prepared from electrospun fibers which are composed of nanofibrils with an island-in-a-sea morphology. The mechanical pressure produces each fibril into nanorods which are converted to anatase single crystals after calcinations. HRTEM shows that the (001) plane is growing along the longitudinal direction of the rod. In this work, the nanorod electrode provides the efficient photocurrent generation in a quasi-solid state dye-sensitized solar cells (DSSCs) using highly viscous PVDF-HFP based gel electrolytes. The overall converision efficiency of the $TiO_2$ nanorods shows 6.2 % under $100\;mW/cm^2$ (AM 1.5G) illumination.

  • PDF

진공 원자층 증착법을 적용한 염료감응형 태양전지의 효율 향상 연구

  • Sin, Jin-Ho;Gang, Sang-U;Kim, Jin-Tae;Go, Mun-Gyu;Hwang, Taek-Seong;Yun, Ju-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.175-175
    • /
    • 2011
  • 최근 석유 자원의 고갈로 인하여 요구되는 대체 에너지 개발의 필요성이 대두되고 있다. 그중 태양에너지는 지구의 생명체가 살아가는 에너지의 근원으로서 매초 800~1,000 W에 달하는 에너지양으로 볼 때 태양은 인류가 가장 풍부하게 활용할 수 있는 에너지원이다. 태양에너지를 이용한 염료감응형 태양전지(Dye-Sensitized Solar Cells, DSSCs)는 제조원가를 낮출 수 있고, 유리 전극을 이용한 투명한 태양전지를 제조할 수 있어 건물의 유리창등으로 응용할 수 있는 장점이있다. 이러한 광변환 효율을 증가시키기 위한 방법으로 전기방사 TiO2 Nanofiber를 기계적으로 갈아서 제조한 TiO2 Nanorod 와 TiO2 Nanoparticle를 섞어서 만든 paste를 이용하여 넓은 표면적과 빠른 전자수송도를 갖게 하였고, 흡착된 염료에서 발생되는 광전자가 전해질의 산화, 환원되는 요오드 이온(I-/I3-)과의 재결합(recombination)현상을 TiO2 전극 위에 높은 밴드갭(band-gap)을 가지는 Al2O3 박막을 TriMethylAluminium (TMA) 전구체를 이용한 원자층 증착(Atomic Layer Deposition, ALD) 공정을 사용하여 진공증착 통해 광전변환효율이 떨어지는 현상을 방지하여 효율을 높였다.

  • PDF

Controlling Size, Shape and Polymorph of TiO2 Nanoparticles by Temperature-Controlled Hydrothermal Treatment

  • Kwon, Do Hun;Jung, Young Hee;Kim, Yeong Il
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.3
    • /
    • pp.238-245
    • /
    • 2015
  • The crystallization and morphology change of amorphous titanias by hydrothermal treatment have been investigated. The amorphous titanias were prepared by pure water hydrolysis of two different precursors, titanium tetraisopropoxide (TTIP) and TTIP modified with acetic acid (HOAc) and characterized prior to hydrothermal treatment. In order to avoid complicate situation, the hydrothermal treatment was performed in a single solvent water with and without strong acids at various temperatures. The effects of strong acid, temperature and time were systematically investigated on the transformation of amorphous titania to crystalline TiO2 under simple hydrothermal condition. Without strong acid the titanias were transformed into only anatase phase nanoparticle regardless of precursor type, temperature and time herein used (up to 250 ℃ and 48 hours). The treatment temperature and time effected only on the crystalline size, not on the crystal phase et al. However, it was clearly revealed that the strong acids such as HNO3 and HCl catalyzed the formation of rutile phase depending on temperature. HCl was slightly better than HNO3 in this catalytic activity. The morphology of rutile TiO2 formed was also a little affected by the type of acid. The precursor modifier, HOAc slightly reduced the catalytic activity of the strong acids in rutile phase formation.

Charge Transport Characteristics of Dye-Sensitized TiO2 Nanorods with Different Aspect Ratios

  • Kim, Eun-Yi;Lee, Wan-In;Whang, Chin Myung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2671-2676
    • /
    • 2011
  • Nanocrystalline $TiO_2$ spherical particle (NP) with a dimension of 5 ${\times}$ 5.5 nm and several nanorods (NR) with different aspect ratios (diameter ${\times}$ length: 5 ${\times}$ 8.5, 4 ${\times}$ 15, 4 ${\times}$ 18 and 3.5 ${\times}$ 22 nm) were selectively synthesized by a solvothermal process combined with non-hydrolytic sol-gel reaction. With varying the molar ratio of TTIP to oleic acid from 1:1 to 1:16, the NRs in the pure anatase phase were elongated to the c-axis direction. The prepared NP and NRs were applied for the formation of nanoporous $TiO_2$ layers in dye-sensitized solar cell (DSSC). Among them, NR2 ($TiO_2$ nanorod with 4 ${\times}$ 15 nm) exhibited the highest cell performance: Its photovoltaic conversion efficiency (${\eta}$) of 6.07%, with $J_{sc}$ of 13.473 mA/$cm^2$, $V_{oc}$ of 0.640 V, and FF of 70.32%, was 1.44 times that of NP with a size of 5 ${\times}$ 5.5 nm. It was observed from the transient photoelectron spectroscopy and the incident photon to current conversion efficiency (IPCE) spectra that the $TiO_2$ films derived from NR2 demonstrate the longest electron diffusion length ($L_e$) and the highest external quantum efficiency (EQE).