Browse > Article
http://dx.doi.org/10.5407/jksv.2022.20.3.042

Effects of the TiO2 nanostructures for water purification in optofluidic microreactor  

Hyunah, Kwon (Max Planck Institute for Intelligent Systems)
Hyejeong, Kim (School of Mechanical Engineering, Korea University)
Publication Information
Journal of the Korean Society of Visualization / v.20, no.3, 2022 , pp. 42-48 More about this Journal
Abstract
The shortage of available freshwater is a major global issue worldwide and an increasing demand for clean water requires efficient water purification strategies. Here we describe a method to drastically increase the efficiency of a microreactor for photocatalytic water purification. To find out how the shape of the catalyst affects water purification, nanostructured catalysts of different structures, such as dense film, nanorod, and nanohelix, are prepared and their water purification characteristics are analyzed. Compared to the flat catalyst, the nanostructured catalyst showed a distinct ability in its pollutant degradation, but the detailed structural variation does not significantly affect the water purification. To further increase efficiency, we apply a micromixer to nanorod-based microreactor, which allows even enhanced mass transfer. This enables the solution of the water purification problem and greatly contributes to the industries where the efficiency of photocatalytic activity has attracted extensive interest.
Keywords
Water purification; Photocatalyst; Micromixer; Nanofabrication;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301-310 (2008).   DOI
2 Akpan, U. G. & Hameed, B. H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. Journal of hazardous materials 170, 520-529 (2009).   DOI
3 Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D. & Pillai, S. C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 25, 1-29 (2015).   DOI
4 Lv, M. et al. Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells. Energy & Environmental Science 6, 1615-1622 (2013).   DOI
5 Farrugia, C. et al. Suitability of different titanium dioxide nanotube morphologies for photocatalytic water treatment. Nanomaterials 11, 708 (2021).   DOI
6 Liao, J. et al. Photocatalytic degradation of methyl orange using a TiO2/Ti mesh electrode with 3D nanotube arrays. ACS Applied Materials & Interfaces 4, 171-177 (2012).   DOI
7 Nagamine, S. Photocatalytic microreactor using TiO2/Ti plates: Formation of TiO2 nanostructure and separation of oxidation/reduction into different channels. Advanced Powder Technology 31, 521-527 (2020).   DOI
8 Nagamine, S. & Inohara, K. Photocatalytic microreactor using anodized TiO2 nanotube array. Advanced Powder Technology 29, 3100-3106 (2018).   DOI
9 Li, L., Tang, D., Song, Y. & Jiang, B. Dual-film optofluidic microreactor with enhanced light-harvesting for photocatalytic applications. Chemical Engineering Journal 339, 71-77 (2018).   DOI
10 Hassell, D. & Zimmerman, W. Investigation of the convective motion through a staggered herringbone micromixer at low Reynolds number flow. Chemical Engineering Science 61, 2977-2985 (2006).   DOI
11 Magde, D., Elson, E. L. & Webb, W. W. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers: Original Research on Biomolecules 13, 29-61 (1974).   DOI
12 Lee, J., Lim, K. G., Palmore, G. T. R. & Tripathi, A. Optimization of microfluidic fuel cells using transport principles. Analytical chemistry 79, 7301-7307 (2007).   DOI