• Title/Summary/Keyword: $TiO_2$ nanocomposite

Search Result 84, Processing Time 0.047 seconds

Photodegration Properties of Dye in TiO$_2$ Nanocomposite (TiO$_2$ 나노합성물에서 Dye의 광열화 특성)

  • 정재훈;조종래;문정오;양종헌;문병기;손세모;정수태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.517-520
    • /
    • 2001
  • The optical properties of TiO$_2$ thin films dispersed in epoxy film, which were prepared with bits-(4,4'-P-toluenesulfonylacidic isoproplyidene) cycolhexadiol(BTSPC) and UVI 6990 in dry sol-gel process, were investigated. In the case of irradiating UV light on TiO$_2$ thin films, how many nanoparticles of TiO$_2$ are dispersed in epoxy film was investigated by AFM. The absorption peak of the films was showed at 360nm. Squarylium dye was dispersed in TiO$_2$-epoxy film. Photodegration concerned with amount of dye and time of UV light irradiation was investigated. UV light irradiation on the film occurred dramatical photodegration.

  • PDF

Oxidation of TiZrAlN nanocomposite thin films in air at temperatures between 500 and $700^{\circ}C$ (TiZrAlN의 500-$700^{\circ}C$ 사이에서 공기 중 산화)

  • Kim, Min-Jeong;Bong, Seong-Jun;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.167-170
    • /
    • 2011
  • Quaternary TiZrAlN nanocomposite thin films with a composition of 20.7Ti-22.2Zr-2.7Al-54.4N (at.%) were deposited by the closed-field unbalanced magnetron sputtering (CFUBMS) method and oxidized in air at temperatures between 500 and $700^{\circ}C$. The oxides formed were $TiO_2$, $ZrO_2$, and $Al_2O_3$. The films had inferior oxidation resistance because the amounts of $ZrO_2$ and $TiO_2$ were large while the amount of $Al_2O_3$ was small. The oxidation progressed primarily by the inward diffusion of oxygen and the outward diffusion of nitrogen.

  • PDF

Flexible Piezoelectric Nanocomposite Generator Devices based on BaTiO3 Dendrite Nanostructure (티탄산바륨 덴드라이트 나노구조체 기반 플렉서블 압전 나노발전소자)

  • Bae, Soo Bin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.139-145
    • /
    • 2015
  • In this paper, the flexible piezoelectric nanocomposite generator(NCG) device based on $BaTiO_3$ nanostructures was fabricated via simple and low-cost spin coating method. The $BaTiO_3$ nanostructures synthesized by self-assembly reaction showed dendrite morphologies. To produce the piezoelectric nanocomposite(p-NC layer) which acts as an electric energy source in NCG device, the piezoelectric nanopowders($BaTiO_3$) were dispersed in polydimethylsiloxane(PDMS). Sequently, the p-NC layer was inserted in two dielectric layer of PDMS; these layers enabled the NCG device flexibility as well as durability prohibiting detachment(exfoliation) for significantly mechanical bending motions. The fabricated NCG device shows average maximum open circuit voltage of 6.2 V and average maximum current signals of 300 nA at 20 wt% composition of $BaTiO_3$ nanostructures in p-NC layer. Finally, the flexible energy harvester generates stable output signals at any rate of frequency which were used to operate LCD device without any external energy supply.

Synthesis of Mesoporous TiO2 Thin Films with Polypyrrole Nanoparticles by Ultrasonic-induced Polymerization (초음파 중합에 의한 polypyrrole 나노입자를 함유하는 메조포러스 TiO2 박막의 합성)

  • Jang, Kwang-Suk;Cho, Sung-Ho;Song, Myung-Geun;Kim, Jong-Duk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.777-782
    • /
    • 2008
  • Using ultrasonic-induced polymerization of pyrrole, mesoporous $TiO_2$ thin film with polypyrrole nanoparticles was prepared. Polypyrrole nanoparticles were ultrasonically synthesized in the mother solution of mesoporous $TiO_2$ before spin-coating. The polypyrrole particles were well dispersed in the solution. After spin-coating and calcinations process, the nanocomposite films have well-organized pore channels without pore-collapse, and polypyrrole nanoparticles are well dispersed in mesoporous $TiO_2$ matrix. The pore size and light absorbance of the mesoporous nanocomposite thin films were controlled by using different template materials, and by using different amount of pyrrole monomer, respectively.

The Property and Photocatalytic Performance Comparison of Graphene, Carbon Nanotube, and C60 Modified TiO2 Nanocomposite Photocatalysts

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3671-3676
    • /
    • 2013
  • A series of carbon nanotube, $C_{60}$, and graphene modified $TiO_2$ nanocomposites were prepared by hydrothermal method. X-ray diffraction, $N_2$ adsorption, UV-Vis spectroscopy, photoluminescence, and Electrochemical impedance spectra were used to characterize the prepared composite materials The results reveal that incorporating $TiO_2$ with carbon materials can extend the adsorption edge of all the $TiO_2$-carbon nanocomposites to the visible light region. The photocatalytic activities were tested in the degradation of 2,4,6-trichlorophenol (TCP) under visible light. No obvious difference in essence was observed in structural and optical properties among three series of carbon modified $TiO_2$ nanocomposites. Three series of carbon materials modified $TiO_2$ composites follow the analogous tentative reaction mechanism for TCP degradation. GR modified $TiO_2$ nanocomposite exhibits the strongest interaction and the most effective interfacial charge transfer among three carbon materials, thus shows the highest electron-hole separation rate, leading to the highest photocatalytic activity and stability.

A Comparison Study of Output Performance of Organic-Inorganic Piezoelectric Nanocomposite Made of Piezoelectric/Non-piezoelectric Polymers and BaTiO3 Nanoparticles (압전 및 비압전 폴리머와 BaTiO3 나노입자로 제조된 유-무기 압전 나노복합체의 발전성능 비교연구)

  • Hyeon, Dong Yeol;Park, Kwi-Il
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.119-125
    • /
    • 2019
  • Piezoelectric energy harvesting technology is attracting attention, as it can be used to convert more accessible mechanical energy resources to periodic electricity. Recent developments in the field of piezoelectric energy harvesters (PEHs) are associated with nanocomposites made from inorganic piezoelectric nanomaterials and organic elastomers. Here, we used the $BaTiO_3$ nanoparticles and piezoelectric poly(vinylidene fluoride) (PVDF) polymeric matrix to fabricate the nanocomposites-based PEH to improve the output performance of PEHs. The piezoelectric nanocomposite is produced by dispersing the inorganic piezo-ceramic nanoparticles inside an organic piezo-polymer and subsequently spin-coat it onto a metal plate. The fabricated organic-inorganic piezoelectric nanocomposite-based PEH harvested the output voltage of ~1.5 V and current signals of ~90 nA under repeated mechanical pushings: these values are compared to those of energy devices made from non-piezoelectric polydimethylsiloxane (PDMS) elastomers and supported by a multiphysics simulation software.

Novel Synthesis of MnO2-SiC Fiber-TiO2 Ternary Composite and Effective Photocatalytic Degradation with Standard Dyes

  • Latiful Kabir;Yeon Woo Choi;Yun Seo Shin;Yeon Ji Shin;Geun Chan Kim;Jun Hyeok Choi;Jo Eun Kim;Young Jun Joo;Kwang Youn Cho;Hyuk Kim;Je-Woo Cha;Won-Chun Oh
    • Korean Journal of Materials Research
    • /
    • v.34 no.6
    • /
    • pp.275-282
    • /
    • 2024
  • In this work, we investigated the photo-degradation performance of MnO2-SiC fiber-TiO2 (MnO2-SiC-TiO2) ternary nanocomposite according to visible light excitation utilizing methylene blue (MB) and methyl orange (MO) as standard dyes. The photocatalytic physicochemical characteristics of this ternary nanocomposite were described by X-ray diffraction (XRD), scanning electron microscopy (SEM), tunneling electron microscopy (TEM), ultraviolet-visible (UV-vis), diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), photocurrent and cyclic voltammogram (CV) test. Photolysis studies of the synthesized MnO2-SiC-TiO2 composite were conducted using standard dyes of MB and MO under UV light irradiation. The experiments revealed that the MnO2-SiC-TiO2 exhibits the greatest photocatalytic dye degradation performance of around 20 % with MB, and of around 10 % with MO, respectively, within 120 min. Furthermore, MnO2-SiC-TiO2 showed good stability against photocatalytic degradation. The photocatalytic efficiency of the nanocomposite was indicated by the adequate photocatalytic reaction process. These research results show the practical application potential of SiC fibers and the performance of a photocatalyst composite that combines these fibers with metal oxides.

Study on the Photocatalytic Characteristic and Activity of Cu2O/TiO2 Heterojunction Prepared by Ultrasonification (초음파 합성 적용 Cu2O/TiO2 이종접합 소재의 특성 및 활성도 평가에 관한 연구)

  • Choi, Jeong-Hak;Lee, Joon Yeob
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1213-1222
    • /
    • 2020
  • In the current study, a Cu2O/TiO2 photoinduced nanocomposite materials prepared by ultrasonification method was evaluated the photocatalytic oxidation efficiency of volatile organic compounds (BTEX) under visible-light irradiation. The results of XRD confirmed the successful preparation of photoinduced nanocomposite materials. However, diffraction peaks belonging to TiO2 were not confirmed for the Cu2O/TiO2. The possible reason for the absence of Cu2O peak is their low content and small particle size. The result of uv-vis spectra exhibited that the fabricated Cu2O/TiO2 can be activated under visible light irradiation. The FE-SEM/EDS and TEM showed the formation of synthesized nanocomposites and componential analysis in the undoped TiO2 and Cu2O/TiO2. The photocatalytic oxidation efficiencies of benzene, toluene, ethylbenzene, and o-xylene with Cu2O/TiO2 were higher than undoped TiO2. According to light sources, the average oxidation efficiencies for BTEX by Cu2OT-0.5 were exhibited in the orer of 8 W day light > violet LEDs > white LEDs. However, the photocatalytic oxidation efficiencies normalized to supplied electric power were calculated to be in the following order of violet LEDs > white LEDs > 8 W day light, indicating that the LEDs could be a much more energy efficient light source for the photo-oxidation of gaseous BTEX using Cu2O/TiO2.

The UV/Ozone Stability of PET and Nylon 6 Nanocomposite Films Containing TiO2 Photocatalysts (TiO2 광촉매를 함유한 PET와 나일론 6 나노복합체막의 자외선/오존에 대한 안정성)

  • Jin, Sung-Woo;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.26 no.2
    • /
    • pp.88-98
    • /
    • 2014
  • This study is to assess the photocatalytic degradation of PET and Nylon 6 films containing nano-sized $TiO_2$ powders of anatase and rutile types. The PET and Nylon 6 films containing six kinds of the nanoparticles were prepared by melt casting method using a heating press machine. Reflectance in visible region and water contact angles of the irradiated PET and Nylon 6 composite films decreased with increasing UV/$O_3$ irradiation. Also the enhanced hydrophilicity has a close relationship with the increase in the Lewis base parameter, which indicates more oxidized polymer surfaces. The photocatalytic degradation of the nanocomposite films increased with increasing $TiO_2$ content and UV energy, which is more significant with the anatase types rather than the rutile types. The amide linkages in the Nylon 6 seemed to be more susceptible to the UV light compared to the ester groups in the PET, particularly in the presence of the $TiO_2$ photocatalysts. The photoscission and photodegradation of the polymers in the composites produced more degraded structure assisted by the photocatalytic activity of the $TiO_2$ nanoparticles. Also the composite films can bleach the methylene blue dyes more easily under the UV/$O_3$ irradiation, suggesting the photobleaching activity of the $TiO_2$ nanoparticles.

TiO2-SiO2 Nanocomposite Fibers Prepared by Electrospinning of Ti-PCS Mixed Solution (Ti-PCS 혼합용액의 전기방사를 통해 제조된 TiO2-SiO2 나노복합 섬유)

  • Shin, Dong-Geun;Jin, Eun-Ju;Lee, Yoon-Joo;Kwon, Woo-Tek;Kim, Younghee;Kim, Soo-Ryong;Riu, Doh-Hyung
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.276-281
    • /
    • 2015
  • Nanostructured $TiO_2-SiO_2$ materials have widely been used as anti-reflecting coating, optical-chemical sensors and catalysts because of their superior optical and thermal properties as well as chemical durability. Web type $SiO_2$ microfibers with nano-crystalline $TiO_2$ were prepared by electrospinning of Ti-PCS mixed solution and oxidation controlled heat-treatment, rather simple than sol-gel process. Nano-crystalline anatase phase were formed for the heat-treatment up to $1200^{\circ}C$ and they were finely dispersed in the amorphous $SiO_2$ matrix.