• Title/Summary/Keyword: $TiO_2$ Nanotubes

Search Result 142, Processing Time 0.03 seconds

Crystallization and Phase Transition of TiO2Nanotubes by Heat Treatment. (열처리 조건에 따른 TiO2 나노튜브의 결정구조 및 형상 변화)

  • Lee, Ju-Yeong;Mun, Seong-Mo;Jeong, Yong-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.319-319
    • /
    • 2012
  • 수용액에서 양극산화법을 이용하여 티타늄 표면에 $TiO_2$ 나노튜브를 형성시켰고, XRD 및 전자현미경을 통해 열처리를 한 $TiO_2$ 나노튜브 소재표면, 계면구조를 관찰하였으며, 이는 향후 나노튜브의 결정구조를 제어할 수 있는 자료로 활용 될 것으로 기대된다.

  • PDF

Synthesis and Characterization of CNT/TiO2 Composites Thermally Derived from MWCNT and Titanium(IV) n-Butoxide

  • Oh, Won-Chun;Chen, Ming-Liang
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.159-164
    • /
    • 2008
  • Two kinds of CNT/TiO2 composite photocatalysts were synthesized with multi-walled carbon nanotubes (MWCNTs) and titanium(IV) n-butoxide (TNB) by a MCPBA oxidation method. Since MWCNTs had charge transfer and semiconducting, the CNT/TiO2 composite shows a good photo-degradation activity. The XRD patterns reveal that only anatase phase can be identified for MCT composite, but the HMCT composite synthesized with HCl treatment was observed the mixed phase of anatase and rutile. The EDX spectra were shown the presence as major elements of Ti with strong peaks. From the SEM results, the sample MCT and HMCT synthesized by the thermal decomposition with TNB show a homogenous sample with only individual MWCNTs covered with TiO2 without any jam-like aggregates between CNTs and TiO2. From the photocatalytic results, we could be suggested that the excellent activity of the CNT/TiO2 composites for organic dye and UV irradiation time could be attributed to combination effects between TiO2 and MWCNTs with plausible photodegradation mechanism.

Research Trends in Doping Methods on TiO2 Nanotube Arrays Prepared by Electrochemical Anodization (양극산화 기법으로 제조한 TiO2 나노튜브의 촉매 도핑 연구 동향)

  • Yoo, Hyeonseok;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.121-127
    • /
    • 2015
  • Nanotubular $TiO_2$ prepared by electrochemical anodization has been significantly used for various applications due to high aspect ratio structures showing a high chemical stability. Morphological properties of nanotubular titanium oxide are easily tailored by adjusting types and compositions of electrolyte, pH value, applied voltage, temperature and anodization time. Since their catalytic properties can be enhanced by doping foreign elements into $TiO_2$, metal as well as non-metal elements are doped into $TiO_2$ nanotubes using different methods. For example, single anodization, thermal annealing, precipitation, and electrochemical deposition have been applied to simplify the doping process. In this review, anodization of Ti to produce $TiO_2$ and doping methods will be discussed in detail.

Preparation and Photonic Properties of CNT/TiO2 Composites Derived from MWCNT and Organic Titanium Compounds

  • Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.234-241
    • /
    • 2009
  • In this study, CNT/$TiO_2$ composites derived from various titanium alkoxides and multiwalled carbon nanotubes (MWCNTs) were synthesized and characterized. Surface areas and pore volumes of the CNT/$TiO_2$ samples showed catastrophic decrease due to deposition of titanium compounds. Scanning electron microscopy (SEM) results indicated that the MWCNTs were homogenously decorated and well-dispersed onto/into the composites without apparent agglomeration of $TiO_2$ particles. In the X-ray diffraction (XRD) patterns, peaks of anatase and rutile phase were observed. The energy dispersive X-ray spectroscopy (EDX) spectra revealed the presence of major elements such as C and O with strong Ti peaks. According to the photocatalytic results, MB removal by a treatment with CNT/$TiO_2$ composites seems to have an excellent removal effect as order of CTIP, CTNB and CTPP composites due to a photolysis of the supported $TiO_2$, the radical reaction and the adsorptivity and absorptivity of the MWCNTs.

The Synthesis and Photocatalytic activity of Carbon Nanotube-mixed TiO2 Nanotubes

  • Park, Chun Woong;Kim, Young Do;Sekino, Tohru;Kim, Se Hoon
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.279-284
    • /
    • 2017
  • The formation mechanism and photocatalytic properties of a multiwalled carbon nanotube (MWCNT)/$TiO_2$-based nanotube (TNTs) composite are investigated. The CNT/TNT composite is synthesized via a solution chemical route. It is confirmed that this 1-D nanotube composite has a core-shell nanotubular structure, where the TNT surrounds the CNT core. The photocatalytic activity investigated based on the methylene blue degradation test is superior to that of with pure TNT. The CNTs play two important roles in enhancing the photocatalytic activity. One is to act as a template to form the core-shell structure while titanate nanosheets are converted into nanotubes. The other is to act as an electron reservoir that facilitates charge separation and electron transfer from the TNT, thus decreasing the electron-hole recombination efficiency.

Studying the influence of the concentration of alkaline solution to the formation of TiO2 nanotube prepared by microwave-assisted hydrothermal method

  • Hao, Nguyen Huy;Cho, Sung Hun;Lee, Soo W.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.260-261
    • /
    • 2014
  • $TiO_2$ nanotubes (TNT) synthesized by microwave-assisted hydrothermal method by using $TiO_2-P25$ as a precursor at hydrothermal temperature $150^{\circ}C$ in 4 hours. The concentration of alkaline solution is between 4M and 10M. Samples were characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), Transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) and UV-vis DRS spectroscopy. The results demonstrated the effects of the alkali concentration to the formation of nanotubes. The photocatalytic activity was investigated by degradation of Methylene Blue (MB).

  • PDF

Titanium Oxide Nanotube Arrays for Quartz Ctystal Microbalance (수정진동자 미세저울을 위한 티타늄산화물 나노튜브 어레이)

  • Mun, Kyu-Shik;Yang, Dae-Jin;Park, Hun;Choi, Won-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.372-372
    • /
    • 2007
  • Titanium oxide nanotube arrays were fabricated by the anodization of pure titanium thin film deposited at $500^{\circ}C$ on silicon substrates. The titania nanotubes were grown by anodization in nonaqueous-base electrolytes at different potentials between 5 V and 30 V. $TiO_2$ nanotube array with a small pore diameter of 40 nm and long titanium oxide layer of $4\;{\mu}m$ was obtained. The $TiO_2$ nanotube array was used as a porous electrode for quartz crystal microbalance (QCM). Nanoporous morphology of electrode will increase the sensitivity of microbalance.

  • PDF

The Influence of Current Flow on OH Radical Generation in a Photocatalytic Reactor of TiO2 Nanotube Plates (전류흐름에 따른 TiO2 nanotube 광촉매의 OH radical 생성량 평가)

  • Kim, Da-Eun;Lee, Yong-Ho;Kim, Dae-Won;Pak, Dae-Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.349-356
    • /
    • 2017
  • OH radical generation is one of the common method to evaluate photocatalytic activity. In many of previous studies, only the UV(Ultraviolet) light was applied to test photocatalytic ability of $TiO_2$ nanotubes by studying probe compound(4-Chlorobenzoic acid) concentration change in solution. Also, $TiO_2$ nanotubes were found to show some electrochemical characteristics when the flow of electric current was applied. In this study, the flow of electric current and UV light were applied at the same time to determine whether electrochemical characteristics of $TiO_2$ nanotube plate can give synergetic effect on the photocatalytic activity. $TiO_2$ nanotube was grown on Ti by anodic oxidation to create $TiO_2$ nanotube plate which can be used as a photocatalyst and a electrode that can undergo AOP(Advanced Oxidation Process) for water treatment. Probe compound solution was prepared using 4-chlorobenzoic acid and $H_2O$ as a solvent. NaCl was added to give conductivity to work as electrolyte. As a result, enough level of electric current flow was found to give synergetic photocatalytic effect which can be used for efficient AOP water treatment method.

Photocatalytic decomposition of polyethylene composite film with TiO2 nanotube powders prepared by rapid breakdown anodization (급속 파괴 양극산화로 제조된 TiO2 나노 튜브 분말을 활용한 폴리에틸렌 복합 필름의 UV 광촉매 분해)

  • Lim, Kyungmin;Kim, Yong-Tae;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.153-159
    • /
    • 2020
  • Photocatalytic decomposition of polyethylene film with TiO2 nanotube powders (NTs) was investigated under UV irradiation at ambient conditions. TiO2 NTs composed of individual nanotubes are prepared by rapid breakdown anodization technique. A comparative study on the photocatalytic decomposition of polyethylene-TiO2 composite films prepared using TiO2 nanoparticles (NPs) or TiO2 NTs (NTs), respectively, was conducted under UV irradiation. Polyethylene film incorporated with TiO2 NTs showed 26 wt% weight loss after 200 h under UV irradiation about two times faster decomposition rate than TiO2 NPs which is attributed to large surface area of TiO2 NTs.

Anodic formation of TiO2 nanoporous structures at high temperature in a glycerol/phosphate electrolyte

  • Lee, Gi-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.95.2-95.2
    • /
    • 2017
  • Anodic TiO2 nanostructures have wide applications due to their various functional properties such as wide band-gap, chemical stability, and anti-corrosiveness. In order to enhance the properties, several approaches to fabricate TiO2 structures have been developed. Especially, TiO2 nanotube arrays prepared by anodization in a fluoride electrolyte show impressive properties for dye sensitized solar cells1 and photocatalyst. In this presentation, we introduce new types of TiO2 nanostructures beyond TiO2 nanotubes that are fabricated by anodization at high temperature in a glycerol/phosphate electrolyte. We show that depending on the anodization parameters different self-organized morphologies - of highly aligned, high aspect ratio oxide structures can be formed. Critical factor for growth and the use for dye sensitized solar cells and photocatalyst will be discussed.

  • PDF