• 제목/요약/키워드: $TiCl_4$solution

검색결과 147건 처리시간 0.023초

Corrosion Behavior of Si,Zn and Mn-doped Hydroxyapatite on the PEO-treated Surface

  • Park, Min-Gyu;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.78-78
    • /
    • 2017
  • Pure Titanium and alloy have been widely used in dental implants and orthopedics due to their excellent mechanical properties, biocompatibility and corrosion resistance. However, due to the biologically inactive nature of Ti metal implants, it cannot bind to the living bone immediately after transplantation into the body. In order to improve the bone bonding ability of titanium implants, many attempts have been made to alter the structure, composition and chemical properties of titanium surfaces, including the deposition of bioactive coatings. The PEO method has the advantages of short experiment time and low cost. These advantages have attracted attention recently. Recently, many metal ions such as silicon, magnesium, zinc, strontium, and manganese have received attention in this field due to their impact on bone regeneration. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation and promotes bone metabolism and growth. Manganese (Mn) is an essential trace metal found in all tissues and is required for normal amino acid, lipid, protein and carbohydrate metabolism. The objective of this work was research on the corrosion behavior of Si, Zn and Mn-doped hydroxyapatite on the PEO-treated surface. Anodized alloys was prepared at 270V~300V voltage in the solution containig Zn, Si, and Mn ions. Ion release test was carried out using potentidynamic and AC impedance method in 0.9% NaCl solution. The surface characteristics of PEO treated Ti-6Al-4V alloy were investigated using XRD, FE-SEM, AFM and EDS.

  • PDF

전해액 조성에 따른 구리박막의 전기적 특성 변화에 대한 연구 (Electrical Properties of Electroplated Cu Thin Film by Electrolyte Composite)

  • 송유진;서정혜;이연승;나사균
    • 한국재료학회지
    • /
    • 제19권6호
    • /
    • pp.344-348
    • /
    • 2009
  • The electrolyte effects of the electroplating solution in Cu films grown by ElectroPlating Deposition(EPD) were investigated. The electroplated Cu films were deposited on the Cu(20 nm)/Ti (20 nm)/p-type Si(100) substrate. Potentiostatic electrodeposition was carried out using three terminal methods: 1) an Ag/AgCl reference electrode, 2) a platinum plate as a counter electrode, and 3) a seed layer as a working electrode. In this study, we changed the concentration of a plating electrolyte that was composed of $CuSO_4$, $H_2SO_4$ and HCl. The resistivity was measured with a four-point probe and the material properties were investigated by using XRD(X-ray Diffraction), an AFM(Atomic Force Microscope), a FE-SEM(Field Emission Scanning Electron Microscope) and an XPS(X-ray Photoelectron Spectroscopy). From the results, we concluded that the increase of the concentration of electrolytes led to the increase of the film density and the decrease of the electrical resistivity of the electroplated Cu film.

Enhanced photocatalytic oxidation of humic acids using Fe3+-Zn2+ co-doped TiO2: The effects of ions in aqueous solutions

  • Yuan, Rongfang;Liu, Dan;Wang, Shaona;Zhou, Beihai;Ma, Fangshu
    • Environmental Engineering Research
    • /
    • 제23권2호
    • /
    • pp.181-188
    • /
    • 2018
  • Photocatalytic oxidation in the presence of Fe-doped, Zn-doped or Fe-Zn co-doped $TiO_2$ was used to effectively decompose humic acids (HAs) in water. The highest HAs removal efficiency (65.7%) was achieved in the presence of $500^{\circ}C$ calcined 0.0010% Fe-Zn co-doped $TiO_2$ with the Fe:Zn ratio of 3:2. The initial solution pH value, inorganic cations and anions also affected the catalyst photocatalytic ability. The HAs removal for the initial pH of 2 was the highest, and for the pH of 6 was the lowest. The photocatalytic oxidation of HAs was enhanced with the increase of the $Ca^{2+}$ or $Mg^{2+}$ concentration, and reduced when concentrations of some anions increased. The inhibition order of the anions on $TiO_2$ photocatalytic activities was $CO{_3}^{2-}$ > $HCO_3{^-}$ > $Cl^-$, but a slightly promotion was achieved when $SO{_4}^{2-}$ was added. Total organic carbon (TOC) removal was used to evaluate the actual HAs mineralization degree caused by the $500^{\circ}C$ calcined 0.0010% Fe-Zn (3:2) co-doped $TiO_2$. For tap water added with HAs, the $UV_{254}$ and TOC removal rates were 57.2% and 49.9%, respectively. The $UV_{254}$ removal efficiency was higher than that of TOC because of the generation of intermediates that could significantly reduce the $UV_{254}$, but not the TOC.

Eicosanoic Acid Langmuir-Blodgett(LB) 박막을 이용한 분자 다이오드의 전기적 특성 (Electrical Properties of Molecular Diode Using Eicosanoic Acid Langmuir-Blodgett(LB) Monolayer Film)

  • 구자룡;이호식;권혁주;손병청
    • 한국응용과학기술학회지
    • /
    • 제20권2호
    • /
    • pp.148-153
    • /
    • 2003
  • Electron transfer through an Langmuir-Blodgett(LB) monolayer film sandwiched between metal electrodes. We used an eicosanoic acid material and the material was very famous as a thin film insulating material. Eicosanoic acid monolayer was deposited by Langmuir-Blodgett(LB) technique and a subphase was a $CdCl_2$ solution as a 2${\times}10^{-4}$ mol/L. Also we used a bottom electrode as an Al/$Al_2O_3$ and a top electrode as a Al and Ti/Al. Here, the $Al_2O_3$ on the bottom electrode was deposited by thermal evaporation method. The $Al_2O_3$ layer was acted on a tunneling barrier and insulating layer in tunnel diode. It was found that the proper transfer surface pressure for film deposition was 25 mN/m and the limiting area per molecule was about 24 ${\AA}^2$/molecule. When the positive and negative bias applied to the molecular device, the behavior shows that a tunnel switching characteristics. This result were analyzed regarding various mechanisms.

Comparison of apical extrusion of intracanal bacteria by various glide-path establishing systems: an in vitro study

  • Dagna, Alberto;El Abed, Rashid;Hussain, Sameeha;Abu-Tahun, Ibrahim H;Visai, Livia;Bertoglio, Federico;Bosco, Floriana;Beltrami, Riccardo;Poggio, Claudio;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • 제42권4호
    • /
    • pp.316-323
    • /
    • 2017
  • Objectives: This study compared the amount of apically extruded bacteria during the glide-path preparation by using multi-file and single-file glide-path establishing nickel-titanium (NiTi) rotary systems. Materials and Methods: Sixty mandibular first molar teeth were used to prepare the test apparatus. They were decoronated, blocked into glass vials, sterilized in ethylene oxide gas, infected with a pure culture of Enterococcus faecalis, randomly assigned to 5 experimental groups, and then prepared using manual stainless-steel files (group KF) and glide-path establishing NiTi rotary files (group PF with PathFiles, group GF with G-Files, group PG with ProGlider, and group OG with One G). At the end of canal preparation, 0.01 mL NaCl solution was taken from the experimental vials. The suspension was plated on brain heart infusion agar and colonies of bacteria were counted, and the results were given as number of colony-forming units (CFU). Results: The manual instrumentation technique tested in group KF extruded the highest number of bacteria compared to the other 4 groups (p < 0.05). The 4 groups using rotary glide-path establishing instruments extruded similar amounts of bacteria. Conclusions: All glide-path establishment instrument systems tested caused a measurable apical extrusion of bacteria. The manual glide-path preparation showed the highest number of bacteria extruded compared to the other NiTi glide-path establishing instruments.

무전해Ni도금에 의한 선택적 CONTACT HOLE 충진 (Selective Contact Hole Filling by Electroless Ni Plating)

  • 김영기;우찬희;박종완;이원해
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 1992년도 춘계학술발표회
    • /
    • pp.26-27
    • /
    • 1992
  • 반도체 기억소자 contact hole의 선택적 충진의 최적 조건을 연구하기 위하여 무전해Ni도금방법을 채택하여 실리콘의 활성화와 선택적 도금의 공정조건이 Contact Hole 도금피막의 제반 특성에 미치는 영향을 조사하였다. p형 실리콘 100 소지 표면의 활성화 처리는 RCA처리에 의해 먼저 표면을 세척한 다음 온도, PdCl$_2$농도, 시간. 교반의 영향을 조사하였다 전처리의 최적조건은 7$0^{\circ}C$, 0.5M HF, ImM PdCl$_2$, 2mM EDTA, 90second이었다. 무전해도금은 NiS0$_4$.6$H_2O$를 DMAB를 환원제로 하여 온도, DMAB 농도, pH, 도금시간의 영향을 조사하였다. 무전해 도금 피막은 비교적 우수한 접촉저 항을 나타냈다. 1$\mu$m의 도금막을 얻는 데 본 실험조건에서 DMAB의 농도가 8mM일 때 30 분이 소요되었다. 도금막의 표면은 온도가 낮을수록 pH가 높을수록 평활하였고,특히 온도 6$0^{\circ}C$와 pH6.8에서 가장 우수하였다. 미세경도는 600Hv 정도였으며, 결정립의 크기 가 증가할수록 저항과 미세경도가 감소하였다.

  • PDF

Corrosion Behaviors of Dental Implant Alloy after Micro-sized Surface Modification in Electrolytes Containing Mn Ion

  • Kang, Jung-In;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of Korean Dental Science
    • /
    • 제11권2호
    • /
    • pp.71-81
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the corrosion behaviors of dental implant alloy after microsized surface modification in electrolytes containing Mn ion. Materials and Methods: $Mn-TiO_2$ coatings were prepared on the Ti-6Al-4V alloy for dental implants using a plasma electrolytic oxidation (PEO) method carried out in electrolytes containing different concentrations of Mn, namely, 0%, 5%, and 20%. Potentiodynamic method was employed to examine the corrosion behaviors, and the alternatingcurrent (AC) impedance behaviors were examined in 0.9% NaCl solution at $36.5^{\circ}C{\pm}1.0^{\circ}C$ using a potentiostat and an electrochemical impedance spectroscope. The potentiodynamic test was performed with a scanning rate of $1.667mV\;s^{-1}$ from -1,500 to 2,000 mV. A frequency range of $10^{-1}$ to $10^5Hz$ was used for the electrochemical impedance spectroscopy (EIS) measurements. The amplitude of the AC signal was 10 mV, and 5 points per decade were used. The morphology and structure of the samples were examined using field-emission scanning electron microscopy and thin-film X-ray diffraction. The elemental analysis was performed using energy-dispersive X-ray spectroscopy. Result: The PEO-treated surface exhibited an irregular pore shape, and the pore size and number of the pores increased with an increase in the Mn concentration. For the PEO-treated surface, a higher corrosion current density ($I_{corr}$) and a lower corrosion potential ($E_{corr}$) was obtained as compared to that of the bulk surface. However, the current density in the passive regions ($I_{pass}$) was found to be more stable for the PEO-treated surface than that of the bulk surface. As the Mn concentration increased, the capacitance values of the outer porous layer and the barrier layer decreased, and the polarization resistance of the barrier layers increased. In the case of the Mn/Ca-P coatings, the corroded surface was found to be covered with corrosion products. Conclusion: It is confirmed that corrosion resistance and polarization resistance of PEO-treated alloy increased as Mn content increased, and PEO-treated surface showed lower current density in the passive region.