• 제목/요약/키워드: $TiCl_4$solution

검색결과 147건 처리시간 0.024초

Preparation of Anatase Particles through Electro-Dialysis of TiCl4 Aqueous Solution

  • Chang, Myung Chul
    • 한국세라믹학회지
    • /
    • 제53권3호
    • /
    • pp.325-331
    • /
    • 2016
  • Anatase particles of titanium dioxide were prepared from $TiCl_4$ aqueous solution by using an electro-dialysis [ED] process. For the preparation of an aqueous solution of $TiCl_4$ precipitates, $TiCl_4$ liquid frozen in ice was transferred to a neck flask and then hydrolyzed using deionized [DI] $H_2O$. During the hydrolysis of the $TiCl_4$ solution at $0^{\circ}C$, a slurry solution of $TiOCl_2$ was obtained and the color changed from red to orange. The ED process was applied for the removal of chlorine content in the slurry solution. Two kinds of hydrolyzed slurry solution with lower [$Ti^{4+}$] and higher [$Ti^{4+}$] were sampled and the ED process was applied for the samples according to the removal time of [$Cl^-$]. With de-chlorination, the solution status changed from sol to gel and the color quickly changed to blue. Finally, white crystalline powders were formed and the phase was confirmed by XRD to be anatase crystallites. The morphology of the hydrous titania particles in the solution was observed by FE-SEM. The hydrous titania particles were nano-crystalline, and easily coagulated with drying.

(Ba, Sr)$TiO_3$ 습식 직접 합성법 (A Study of (Ba, Sr)$TiO_3$ Synthesis by Direct Wet Process)

  • 이경희;이병하;김준수
    • 한국세라믹학회지
    • /
    • 제23권1호
    • /
    • pp.27-32
    • /
    • 1986
  • This study is aimed at synthsizing high dielectric material (Ba, Sr)$TiO_3$ through direct wet process. Pure and ultra fine particle of (Ba, Sr)$TiO_3$ Powder was synthesized from $BaCl_2$ $SrCl_2$ and TiCl4 aqeous solution at KOH Solution in the $N_2$ gas atmosphere. $BaCl_2$ $SrCl_2$ and TiCl4 were Mixed with the mole ratio of 1:9, 3:7:10, 5:5:10, 7:3:10, 9:1:10 and sythesized at 4$0^{\circ}C$~9$0^{\circ}C$ for 10min~15hrs. The particle size particle shape crystallinity and synthesis condition of (Ba, Sr)$TiO_3$ powder with the variation of temperature and reaction time in the aqueous solution studied by the exprimental instruments of DTA. TGA, X-ray diffratometer SEM.

  • PDF

균일침전법에 의한 이산화티타늄 제조공정에서 TiOCl2 수용액의 Cl-total:Ti+4의 몰 비율이 TiO2 결정구조에 미치는 영향 (Influence of the Molar Ratio of Cl-total:Ti+4 on the Crystalline Structure in Preparation of TiO2 from Aqueous TiOCl2 Solution by Homogeneous Precipitation Method)

  • 이정훈;양영석
    • 공업화학
    • /
    • 제16권6호
    • /
    • pp.785-789
    • /
    • 2005
  • $TiCl_4$와 염산수용액을 사용하여 균일침전반응으로 브루카이트상과 루틸상의 혼합상 $TiO_2$ 분말을 제조하여 분말특성을 조사하였다. 분석결과로부터 순수한 루틸상과 혼합상이 합성되기 위한 침전용액의 ${Cl^-}_{total}:Ti^{+4}$의 몰 비율이 제시되었다. 또한, 혼합상이 얻어지는 조건에서는 염산의 농도가 증가할수록 브루카이트상의 부피분율이 증가하였으며, 이 분말을 열처리한 결과 브루카이트상은 루틸상으로 직접 상변화하지 않고 $800^{\circ}{\sim}850^{\circ}C$에서 아나타제상으로 상전이한 후 $1000^{\circ}C$에서 최종적으로 안정한 루틸상으로 상변화되었다.

침전법으로 TiCl4 수용액의 산농도 조절을 통한 나노크기의 순수한 브루카이트상 이산화티타늄 분말 제조 (Synthesis of Pure Brookite-type TiO2 Nanoparticles from Aqueous TiCl4 Solution with controlled Acidity by Precipitation Method)

  • 이정훈;양영석
    • 공업화학
    • /
    • 제18권6호
    • /
    • pp.545-551
    • /
    • 2007
  • $TiCl_4$ 수용액의 침전반응으로 $TiO_2$를 제조할 때 침전용액의 염산농도와 반응온도 및 $Ti^{4+}$농도는 $TiO_2$ 침전물의 결정구조를 결정하는 중요한 인자이며, 이들의 조절을 통하여 브루카이트상의 부피분율 제어가 가능하다. 순수한 브루카이트상 이산화티타늄을 제조하기 위해서는 $Ti^{4+}$농도를 1.0 M 이하로 유지하고, 침전용액의 염산농도를 2.53~6.41 M이 되도록 조절한후 $70^{\circ}C$ 이하에서 20 h 침전반응 시켜야 한다. 한편, 순수한 브루카이트상 분말을 열처리한 결과 브루카이트상은 열처리 온도의 증가에 따라 아나타제상으로 상전이 된 후 최종적으로 루틸상으로 상변화가 진행되었다.

Synthesis of Titanium Carbide Nano Particles by the Mechano Chemical Process

  • Ahn, In-Shup;Park, Dong-Kyu;Lee, Yong-Hee
    • 한국분말재료학회지
    • /
    • 제16권1호
    • /
    • pp.43-49
    • /
    • 2009
  • Titanium carbides are widely used for cutting tools and grinding wheels, because of their superior physical properties such as high melting temperature, high hardness, high wear resistance, good thermal conductivity and excellent thermal shock resistance. The common synthesizing method for the titanium carbide powders is carbo-thermal reduction from the mixtures of titanium oxide($TiO_2$) and carbon black. The purpose of the present research is to fabricate nano TiC powders using titanium salt and titanium hydride by the mechanochemical process(MCP). The initial elements used in this experiment are liquid $TiCl_4$(99.9%), $TiH_2$(99.9%) and active carbon(<$32{\mu}m$, 99.9%). Mg powders were added to the $TiCl_4$ solution in order to induce the reaction with Cl-. The weight ratios of the carbon and Mg powders were theoretically calculated. The TiC and $MgCl_2$ powders were milled in the planetary milling jar for 10 hours. The 40 nm TiC powders were fabricated by wet milling for 4 hours from the $TiCl_4$+C+Mg solution, and 300 nm TiC particles were obtained by using titanium hydride.

공침법에 의해 제조된 $TiO_2-SnO_2$ 미분말의 결정구조 (Crystal Structure of $TiO_2-SnO_2$ Fine Powders Prepared by Coprecipitation)

  • 이종흔;박순자
    • 한국세라믹학회지
    • /
    • 제30권9호
    • /
    • pp.740-746
    • /
    • 1993
  • TiO2-SnO2 fine powders prepared by coprecipitation from TiCl4-SnCl4 aqueous solution, and their crystal structures were studied. All the TiO2-SnO2 fine powders calcined at 180~$700^{\circ}C$ showed the complete solid solution between TiO2(rutile structure) and SnO2(rutile structure). This crystal structure of TiO2-SnO2 powders is thought to be originated mainly from the heterogeneous nucleation of Ti-hydroxde on the Sn-hydroxide with coherent structure.

  • PDF

TiCl₄가수분해에 의한 titanic acid의 생성에 관한 연구 (The study on the formation of titanic acid by dehydration of TiCl₄)

  • 김헌;김대웅;이경희;백운필
    • 한국결정성장학회지
    • /
    • 제8권2호
    • /
    • pp.342-342
    • /
    • 1998
  • TiCl₄수용액의 탈수 반응에 있어 pH의 영향에 관하여 연구하였다. KOH와 HCl을 탈수 촉진 및 탈수 지연제로 사용하여 실험한 결과 다음과 같은 결론을 얻었다. TiCl₄수용액과 KOH와의 반응계에서 중화점은 pH 7.4이었으며 중화점 이전에서는 반응 생성물로 polymetatitanic acid의 중합체인 Ti-gel이 생성되고 중화점 이상에서는 재탈수 반응에 의하여 oligomer화가 일어난다. 또한 결정성 potasium titanate는 존재하지 않는다.

鹽化티타닐 製造에 關한 硏究 (Preparation of Titanyl Chlorde)

  • 천병두;신윤경
    • 대한화학회지
    • /
    • 제4권1호
    • /
    • pp.15-17
    • /
    • 1957
  • 1. Preparation of Titanium tetrachloride; The following precesses were strictly followed as the preliminary step to obtain pure $TiOCl_2$, titanyl chloride; First, pure Titanium Oxide mixed with carbon is rolled into pills. After drying up perfectly, these pills are heated at 900∼1000${\circ}C$. And then the pills are subjected to the flow of $Cl_2$ gas in a quartz tube heated to 900-1000${\circ}C$. Thus Titanium tetrachloride is obtained. 2. Preparation of $TiOCl_2$ ; Yellowish trobrown solution is made by pouring 80 g of conc. HCl (sp.gr. 1.19) to 45 gr of Titanium tetrachloride (approx. 2 times of theoretical amount). Then this solution is kept settled for 5-days in a desiccator filled with phosphorous pentoxide at room temperature. As the colorless amorphous solid thus obtained is washed with aceton, 36.5 g of the pure salt are obtained. 3. Determination of composition. The analysis of the sample taken from the deposit desiccated gives the following data; (A) Qualitative analysis; a) $Ti(OH)_4$ is precipitated by adding NaOH in water solution of the salt. b) Adding $AgNO_3$ solution, the water solution of the salt gives white precipitate of AgCl. c) When acid and $H_2O_2$ are added, the solution turns its color to redish brown (This proves that $TiO^{++}$ was converted into $TiO^{++}$ by oxidation of $H_2O_2$. (B) Quantitative analysis; a) $Ti(OH)_4$ precipitated by $10{\%}$ NaOH isalitatsubjected consecutively to the filtration and ignition in porcelain crucible at approx. 1000${\circ}C$. , then $TiO_2$ thus formed is weighed and calculated into Ti content. b) Chlorine involved in water solution of the salt is determined by Vorhardt method. Result: The values obtained from previous analysis, devied by their atomic weight gives the following composition: Ti : Cl = 1 : 2 Therefore $TiOCl_2$ should be given as its molecular formula. 4. Summary. When $TiCl_4$ is additated into conc. HCl, $TiO^{++}$ formed exists as a stable form, and forms $TiOCl_2$. However $TiOCl_2$ is unstable to heating. When the temperature is raised to $65{\circ}C$the decomposition of the solution is accelerated, and gives $TiO_2$ aq. $TiOCl_2$ in addition is highly hygroscopic.

  • PDF

마그네슘 열환원에 의한 저응집 초미립 TiCN 분말합성 (Synthesis of Ultrafine and Less Agglomerated TiCN Powders by Magnesiothermic Reduction)

  • 이동원
    • 한국분말재료학회지
    • /
    • 제19권5호
    • /
    • pp.356-361
    • /
    • 2012
  • The ultra-fine and less agglomerated titanium carbonitride particles were successfully synthesized by magnesiothermic reduction with low feeding rate of $TiCl_4+1/4C_2Cl_4$ solution. The sub-stoichiometric titanium carbide ($TiC_{0.5{\sim}0.6}$) particles were produced by reduction of chlorine component by liquid magnesium at $800^{\circ}C$ of gaseous $TiCl_4+1/4C_2Cl_4$ and the heat treatments in vacuum were performed for 5 hours to remove the residual magnesium and magnesium chloride mixed with produced $TiC_{{\sim}0.5}$. The final $TiC_{{\sim}0.5}N_{0{\sim}0.5}$ particle with near 100 nm in mean size and high specific surface area of $65m^2/g$ was obtained by nitrification under nitrogen gas at $1,150^{\circ}C$ for 2 hrs.