• Title/Summary/Keyword: $TiCl_4$ treatment

Search Result 82, Processing Time 0.027 seconds

Effects of Deposition Parameters on TiN Film by Plasma Assisted Chemical Vapor Deposition(II) -Influence of TiCl4, N2 inlet Fraction on the TiN Deposition- (플라즈마 화학증착법(PACVD)에 의한 TiN증착시 증착변수가 미치는 영향(II) -TiCl4, N2의 입력분율을 중심으로-)

  • Rhee, B.H.;Shin, Y.S.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.4
    • /
    • pp.11-18
    • /
    • 1989
  • To investigate the influence of $TiCl_4$, $N_2$ inlet fraction on the TiN layer, TiN film was deposited onto the STC3 and STD11 steel from gas mixtures of $TiCl_4/N_2/H_2$ by the radio frequency plasma assisted chemical vapor deposition. The films were deposited at various $TiCl_4$, $N_2$ inlet fractions. The results showed that the film thickness was increased with $TiCl_4$ inlet fraction. However, while the thickness was increased with $N_4$ inlet fraction under 0.4 the thickness was decreased with increasing $N_2$ inlet fraction over 0.4. The density of deposited films was varied as $TiCl_4$, $N_2$ inlet fraction and its maximum value was about $5.6g/cm^3$. The contents of chlorine were increased with increasing $TiCl_4$ inlet fraction and nearly constant with increasing $N_2$ inlet fraction.

  • PDF

Synthesis of Pure Brookite-type TiO2 Nanoparticles from Aqueous TiCl4 Solution with controlled Acidity by Precipitation Method (침전법으로 TiCl4 수용액의 산농도 조절을 통한 나노크기의 순수한 브루카이트상 이산화티타늄 분말 제조)

  • Lee, Jeong Hoon;Yang, Yeong Seok
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.545-551
    • /
    • 2007
  • HCl concentration, reaction temperature, and $Ti^{4+}$ concentration are the decisive factors in determining the structure of precipitates in the process of synthesis of $TiO_2$ particles from aqueous $TiCl_4$ solution by precipitation and the volumetric proportion of brookite phase in $TiO_2$ particles can be controlled by these factors. Pure brookite-type $TiO_2$ nanoparticles were synthesized by heating the aqueous $TiCl_4$ solution with no more than 1.0 M of $Ti^{4+}$, in which the concentration of HCl was kept in the range of about 2.53~6.41 M during reaction, at the temperature below $70^{\circ}C$ for 20 h. Also, Pure brookite was finally transformed to a rutile phase via an anatase phase through heat-treatment.

Synthesis and Process Development of Ultrafine Ti Powder by Sodium Flame Encapsulation Method (Sodium Flame Encapsulation 방법에 의한 초미립 Ti 분말 합성 및 공정개발)

  • Maeng, Deok-Yeong;Lee, Chang-Gyu;Kim, Heung-Hui
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.391-397
    • /
    • 2002
  • Synthesis and process development of nano-size Ti powder by SFE(Sodium/halide Flame Encapsulation) method were investigated. Four concentric coflow burner was used and its flame configuration was $TiCl_4/Ar/Na/Ar$ in order from the center. Flame has been controlled by the various processing parameters such as temperature of burner and flow rates of both $TiCl_4$(g) precursor and Na(g). It was found that yellow-colored flame was shown in the flow rates of 70cc/min of $TiCl_4$(g) precursor and 2 $\ell$ /min of Na(g) which were regarded as optimum flame condition. The powders encapsuled by NaCl were produced having the average powder size of 250nm. The results of X-ray diffraction showed that powders from the optimized condition consisted of pure Ti and NaCl. TEM analysis confirmed that the several Ti powders of 20-100nm were encapsulated with NaCl. After removing sodium chloride by heat treatment, the spherical Ti powders with the size range of 80 to 150nm were obtained.

Influence of the Molar Ratio of Cl-total:Ti+4 on the Crystalline Structure in Preparation of TiO2 from Aqueous TiOCl2 Solution by Homogeneous Precipitation Method (균일침전법에 의한 이산화티타늄 제조공정에서 TiOCl2 수용액의 Cl-total:Ti+4의 몰 비율이 TiO2 결정구조에 미치는 영향)

  • Lee, Jeong Hoon;Yang, Yeong Seok
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.785-789
    • /
    • 2005
  • $TiO_2$ powders with rutile and brookite phases were synthesized through homogeneous precipitation of the aqueous $TiOCl_2$ solution, prepared from $TiCl_4$ and HCl solution, and their properties were characterized. Based on the analytical results appropriate molar ratios of ${Cl^-}_{total}:Ti^{+4}$ in precipitating solution for synthesis of pure rutile phase and a mixture of rutile and brookite phases were proposed. The volumetric proportion of brookite increased with increasing HCl concentration under a typical condition obtaining mixed phase of rutile and brookite. The brookite phase in the mixture was transformed to anatase phase by heat treatment at about $800^{\circ}C{\sim}850^{\circ}C$, and finally converted to rutile phase at $1000^{\circ}C$.

Dynamic Response of Charge Transfer and Recombination at Various Electrodes in Dye-sensitized Solar Cells Investigated Using Intensity Modulated Photocurrent and Photovoltage Spectroscopy

  • Kim, Gyeong-Ok;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.469-472
    • /
    • 2012
  • Intensity modulated photocurrent spectroscopy and intensity modulated photovoltage spectroscopy were investigated to measure the dynamic response of charge transfer and recombination in the standard, $TiCl_4$-treated and the combined scattering layer electrode dye-sensitized solar cells (DSSCs). IMPS and IMVS provided transit time ($\tau_n$), lifetime ($\tau_r$), diffusion coefficient ($D_n$) and effective diffusion length ($L_n$). These expressions are derived that generation, collection, and recombination of electrons in a thin layer nanocrystalline DSSC under conditions of steady illumination and with a superimposed small amplitude modulation. In this experimental, IMPS/IMVS showed that the main effect of $TiCl_4$ treatment is to suppress the recombination of photogenerated electrons, thereby extending their lifetime. And the Diffusion coefficient of combined scattering layer electrode is $6.10{\times}10^{-6}$ higher than that of the others, resulting in longer diffusion length.

Influence of a TiCl4 Treatment Condition on Dye-Sensitized Solar Cells

  • Kim, Jung-Kyu;Shin, Ka-Hee;Lee, Kun-Seok;Park, Jong-Hyeok
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.2
    • /
    • pp.81-84
    • /
    • 2010
  • In dye-sensitized solar cells (DSSCs), the back transfer of photo-generated electrons from FTO glass to triiodide ions in an electrolyte is an important loss mechanism, which leads to low cell efficiency. Recently, this back electron transfer was greatly suppressed by the introduction of a compact $TiO_2$ blocking layer, which was prepared by the treatment of $TiCl_4$ solution. In the present work, more detailed $TiCl_4$ treated surface conditions on FTO substrate were investigated and DSSC performances were correlated with the surface morphology as well as dark current behavior.

Photoelectrochemical and Hydrogen Production Characteristics of CdS-TiO2 Nanocomposite Photocatalysts Synthesized in Organic Solvent (유기용매상에서 제조된 수소제조용 CdS-TiO2 나노복합 광촉매의 특성 연구)

  • Jang, Jum-Suk;So, Won-Wook;Kim, Kwang-Je;Moon, Sang-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.3
    • /
    • pp.224-232
    • /
    • 2002
  • CdS-$TiO_2$ nano-composite sol was prepared by the sol-gel method in organic solvents at room temperature and further hydrothermal treatment at various temperatures to control the physical properties of the primary particles. Again, CdS-$TiO_2$ composite particulate films were made by casting CdS-$TiO_2$ sols onto $F:SnO_2$ conducting glass and then heat-treatment at $400^{\circ}C$. Physical properties of these 61ms were further controlled by the surface treatment with $TiCl_4$, aqueous solution. The photo currents and hydrogen production rates measured under the experimental conditions varied according to the $CdS/[CdS+TiO_2]$ mole ratio and the mixed-sol preparation method. For $CdS-TiO_2$ composite sols prepared in IPA, CdS particles were homogeneously surrounded by $TiO_2$ particles. Also, the surface treatment with $TiCl_4$ aqueous solution caused a considerable improvement in the photocatalytic activity, probably as a result of close contacts between the primary particles by the etching effect of $TiCl_4$. It was found that the photoelectrochemical performance of these particulate films could be effectively enhanced by this approach.

Effect of Surface Treatment of CdS-TiO2 Composite Photocatalysts with Film Type on Hydrogen Production (수소제조에 관한 박막형 CdS-TiO2 복합 광촉매계의 표면처리 효과)

  • Jang, Jum-Suk;So, Won-Wook;Kim, Kwang-Je;Moon, Sang-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.1
    • /
    • pp.34-41
    • /
    • 2002
  • CdS and $TiO_2$ nanoparticles were made by the precipitation method and sol-gel method, respectively, and they were mixed mechanically and then treated with the hydrothermal processing. CdS-$TiO_2$ composite particulate films were thus prepared by casting CdS-$TiO_2$ mixed sol onto $SnO_2$ conducting glass and a subsequent heat-treatment at $400^{\circ}C$. Again, the physico-chemical and photoelectrochemical properties of these films were controlled by the surface treatment with $TiCl_4$ aqueous solution. The photocurrents and the hydrogen production rates measured under the present experimental conditions varied in the range of $3.5{\sim}4.5mA/cm^2$ and $0.3{\sim}1.8cc/cm^2$-hr, respectively, and showed the maximum values at the $CdS/[CdS+TiO_2]$ mole ratio of 0.2. Also, the surface treatment with $TiCl_4$ aqueous solution caused a considerable improvement in the photocatalytic activity, Probably as a result of close contacts between the primary particles by the etching effect of $TiCl_4$ It was found that the photoelectrochemical performance of these particulate films could be effectively enhanced by this approach.

A Preponderant Enhancement of Conversion Efficiency by Surface Coating of $SnO_2$ Nanoparticles in Organic MK-2 Dye Sensitized Solar Cell

  • Son, Dae-Yong;Lee, Chang-Ryul;Park, Nam-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.218-218
    • /
    • 2012
  • Nanocrystalline $SnO_2$ colloids are synthesized by hydrolysis of $SnCl_4{\cdot}5H_2O$ in aqueous ammonia solution. The synthesized $SnO_2$ nanoparticles with ca. 15 nm in diameter are coated on a fluorinedoped thin oxide (FTO) conductive substrate and heated at $550^{\circ}C$. The annealed $SnO_2$ film is treated with aqueous $TiCl_4$ solution, which is sensitzied with MK-2 dye (2-cyano-3-[5'''-(9-ethyl- 9H-carbazol-3-yl)-3',3'',3''',4-tetra-n-hexyl-[2,2',5',2'',5'',2''']-quater thiophen-5-yl]). Compared to bare $SnO_2$ film, the conversion efficiency is significantly improved from 0.22% to 3.13% after surface treatment of $SnO_2$ with $TiCl_4$, which is mainly due to the large increases in both photocurrent density from 1.33 to $9.46mA/cm^2$ and voltage from 315 to 634 mV. It is noted that little change in the amount of the adsorbed dye is detected from 1.21 for the bare $SnO_2$ to $1.28{\mu}mol/cm^2$ for the $TiCl_{4-}$ treated $SnO_2$. This indicates that the photocurrent density increased by more than 6 times is not closely related to the dye loading concentration. From the photocurrent and voltage transient spectroscopic studies, electron life time increases by about 13 order of magnitude, whereas electron diffusion coefficient decreases by about 3.6 times after $TiCl_4$ treatment. Slow electron diffusion rate offers sufficient time for regeneration kinetics. As a result, charge collection efficiency of about 40% before $TiCl_4$ treatment is improved to 95% after $TiCl_4$ treatment. The large increase in voltage is due to the significant increase in electron life time, associated with upward shift of fermi energy.

  • PDF

Effects of Multi-layer and TiCl4 Treatment for TiO2 Electrode in Dye-sensitized Solar Cell (염료감응 태양전지의 TiO2 전극의 다중층 및 TiCl4 처리에 따른 효과)

  • Kim, Gyeong-Ok;Kim, Ki-Won;Cho, Kwon-Koo;Ryu, Kwang-Sun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.190-195
    • /
    • 2011
  • To investigate the photon-trapping effect and scattering layer effect of $TiO_2$ multi-layer in dye-sensitized solar cell (DSSC) and the degree of recombination of electrons at the electrode treated $TiCl_4$, we formed electrodes of different conditions and obtained the most optimal electrode conditions. To estimate characteristics of the cell, IV curve, UV-Vis spectrophotometer, electrochemical impedance spectroscopy (EIS) and incident photon-to-current conversion efficiency (IPCE) were measured. As a result, we confirmed that the multi-layer's efficiency was higher than that of monolayer in the IV curve and the performance of $TiCl_4$ treated electrode was increased according to decreasing the impedance of EIS. Among several conditions, the efficiency of the cell with scattering layer is higher than that of a layer with the base electrode about 19%. Because the light scattering layer enhances the efficiency of the transmission wavelength and has long electron transfer path. Therefore, the value of the short circuit current increases approximately 10% and IPCE in the maximum peak also increases about 12%.