• Title/Summary/Keyword: $Ti-Al_2O_3$ powder

Search Result 111, Processing Time 0.028 seconds

The effect of the addition of TiO2 in the preparation of (Al2O3-SiC)- SiC composite powder by SHS Process (SHS법을 이용한 복합분말(Al2O3-SiC) 제조시 TiO2첨가의 영향)

  • Yun, Gi-Seok;Yang, Beom-Seok;Lee, Jong-Hyeon;Won, Chang-Hwan
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • $Al_2O_3-SiC$ and $Al_2O_3-SiC$-TiC composite powders were prepared by SHS process using $SiO_2,\;TiO_2$, Al and C as raw materials. Aluminum powder was used as reducing agent of $SiO_2,\;TiO_2$ and activated charcoal was used as carbon source. In the preparations of $Al_2O_3-SiC$, the effect of the molar ratio in raw materials, compaction pressure, preheating temperature and atmosphere were investigated. The most important variable affecting the synthesis of $Al_2O_3-SiC$ was the molar ratio of carbon. Unreactants remained in the product among all conditions without compaction. The optimum condition in this reaction was $SiO_2$: Al: C=3: 5: 5.5, 80MPa compaction pressure under Preheating of $400^{\circ}C$ with Ar atmosphere. However there remains cabon in the optimum condition. The effect of $TiO_2$ as additive was investigated in the preparations of $Al_2O_3-SiC$. As a result of $TiO_2$ addition, $Al_2O_3-SiC$-TiC composite powder was prepared. The $Al_2O_3$ powder showed an angular type with 8 to $15{\mu}m$, and the particle size of SiC powder were 5~$10{\mu}m$ and TiC powder were 2 to $5{\mu}m$.

Preparation of $Al_2O_3-TiO_2$ Composite Powder from Alkoxides (I) 1. Preparation of $Al_2TiO_5$ by the SOl-gel Method and the effects of Additives (알콕사이드로부터 $Al_2O_3-TiO_2$계 복합분체의 합성(I) 1. Sol-Gel법에 의한 $Al_2TiO_5$ 분말합성과 첨가제의 영향)

  • 정종열;이형민;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.10
    • /
    • pp.1138-1146
    • /
    • 1996
  • Al2TiO5 powder was prepared by the sol-gel processing from th metal alkoxides ; aluminium sec-butoxide (Al(OC4H9)3 and tetraethyl orthotitanate (Ti(OC2H5)4) The particles of Al2TiO5 produced from alkoxides were measured to be below $1.5mutextrm{m}$ and mre than 90% weere below 1 ${\mu}{\textrm}{m}$ however those from commercial alumina and titania were over 0.5-7${\mu}{\textrm}{m}$ and only 60% were below 1${\mu}{\textrm}{m}$ and 90% were below 2.5${\mu}{\textrm}{m}$ Therefore Al2TiO5 powder produced from alkoxides had the narrower distributionin size than that produced from the commercial alumina and titania powders. The addition of mullite or Al2O3 powder to the prepared aluminum titanate inhibited the grain growth and this resulted in decreased and increase in density.

  • PDF

High Temperature Oxidation Behavior of Plasma-sprayed Ti(Al,O)/$Al_2O_3$ Coatings on SS41 Steel (Ti(Al,O)/$Al_2O_3$ 플라즈마 코팅한 SS41의 고온산화 거동)

  • Choi, G.S.;Woo, K.D.;Lee, H.B.;Jeon, J.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.5
    • /
    • pp.231-236
    • /
    • 2007
  • High velocity oxy-fuel (HVOF) spraying was used to coat Ti(Al,O)/$Al_2O_3$ powder onto the SS41 steel plate. Macrostructure of the coated specimen has been investigated by scanning electron micrograph (SEM). High temperature oxidation behavior of the coated specimen and SS41 steel have been studied. From the results of SEM observation, Ti(Al,O)/$Al_2O_3$ powder was coated well onto the substrate SS41 steel. Porosity onto the coated layer was only 0.38%. The oxidation results showed that Ti(Al,O)/$Al_2O_3$ powder coated SS41 steel have improved little oxidation resistance at $900^{\circ}C$ in air, but improved remarkably oxidation resistance at $800^{\circ}C $ in air compare to the substrate SS41 steel.

Evaluation of Oxygen Reduction and Surface Chemical State of Ti-48Al-2Cr-2Nb Powder by Ca Vapor (칼슘 증기에 의한 Ti-48Al-2Cr-2Nb 분말의 산소 저감 및 표면 화학적 상태 분석)

  • Kim, Taeheon;Kwon, Hanjung;Lim, Jae-Won
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.31-37
    • /
    • 2021
  • This study explores reducing the oxygen content of a commercial Ti-48Al-2Cr-2Nb powder to less than 400 ppm by deoxidation in the solid state (DOSS) using Ca vapor, and investigates the effect of Ca vapor on the surface chemical state. As the deoxidation temperature increases, the oxygen concentration of the Ti-48Al-2Cr-2Nb powder decreases, achieving a low value of 745 ppm at 1100℃. When the deoxidation time is increased to 2 h, the oxygen concentration decreases to 320ppm at 1100℃, and the oxygen reduction rate is approximately 78% compared to that of the raw material. The deoxidized Ti-48Al-2Cr-2nb powder maintains a spherical shape, but the surface shape changes slightly owing to the reaction of Ca and Al. The oxidation state of Ti and Al on the surface of the Ti-48Al-2Cr-2Nb powder corresponds to a mixture of TiO2 and Al2O3. As a result, the peaks of metallic Ti and Ti suboxide intensify as TiO2 and Al2O3 in the surface oxide layer are reduced by Ca vapor deposition.

Fabrication of Composite Powders by Mechanical Alloying of Magnetite-M (M = Ti, Al) Systems (마그네타이트와 금속(Ti, Al)의 기계적 합금화에 의한 복합분말의 합성)

  • 홍대석;이성희;이충효;김지순;권영순
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.247-252
    • /
    • 2004
  • Recently, it has been found that mechanical alloying (MA) facilitates the nanocomposites formation of metal-metal oxide systems through solid-state reduction during ball milling. In this work, we studied the MA effect of Fe$_{3}$O$_{4}$-M (M = Al, Ti) systems, where pure metals are used as reducing agents. It is found that composite powders in which $Al_{2}$O$_{3}$ and TiO$_{2}$ are dispersed in $\alpha$-Fe matrix with nano-sized grains are obtained by mechanical alloying of Fe$_{3}$O$_{4}$ with Al and Ti for 25 and 75 hours, respectively. It is suggested that the large negative heat associated with the chemical reduction of magnetite by aluminum is responsible for the shorter MA time for composite powder formation in Fe$_{3}$O$_{4}$-Al system. X-ray diffraction results show that the reduction of magnetite by Al and Ti if a relatively simple reaction, involving one intermediate phase of FeAl$_{2}$O$_{4}$ or Fe$_{3}$Ti$_{3}$O$_{10}$. The average grain size of $\alpha$-Fe in Fe-TiO$_{2}$ composite powders is in the range of 30 nm. From magnetic measurement, we can also obtain indirect information about the details of the solid-state reduction process during MA.

Fabrication of $Ti(Al,\;O)-Al_2O_3$ Powder Feedstock for Thermal Spraying and Evaluation of the Composite Coating

  • Cao, Peng;Gabbitas, Brian;Zheng, Ling;Zhang, Deliang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.49-50
    • /
    • 2006
  • [ $Ti(Al,\;O)-Al_2O_3$ ] composite powders were produced by high energy mechanical milling of a mixture of Al and $TiO_2$ powders followed by a combustion reaction. The powders were subsequently thermally sprayed on H13 steel substrates. Microstructural examination was conducted on the composite powders and thermally sprayed coatings, using X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The performance of the coatings was evaluated in terms of micro-hardness and thermal fatigue. The thermally sprayed coatings performed very well in the preliminary thermal fatigue tests and showed no wetting tendency to molten aluminum.

  • PDF

A Study on the Evaluation of Adsorption Characteristics of VOCs on TiO2 and Al2O3 and Investigation of the Thermal Durability by Molding Various Structures (TiO2와 Al2O3의 기상 VOCs 흡착 특성 평가 및 다양한 구조체로의 성형을 통한 열적 내구성 확보에 관한 연구)

  • Hwang, In-Hyuck;Lee, Sang Moon;Kim, Sung Su
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.280-286
    • /
    • 2018
  • In this study, the adsorption performance of vapor phase VOCs under dry conditions was evaluated by using two metal oxides, $TiO_2$ powder and $Al_2O_3$ powder. BET analysis and ammonia in-situ FT-IR analysis were used to analyze specific surface area and surface acid site. As a result, $TiO_2$ powder and $Al_2O_3$ powder had a specific surface area of $317.6m^2\;g^{-1}$ and $64m^2\;g^{-1}$, respectively. In the case of $TiO_2$ powder, many acid sites were observed on the surface. As a result of evaluating the vapor phase VOCs adsorption performance using two metal oxide powders, $TiO_2$ powder having a relatively large specific surface area and a large number of acid sites exhibited relatively good adsorption performance. In particular, it is considered that the specific surface area directly affects the adsorption performance, and further study on the effect of the acid site is required. Based on the $TiO_2$ exhibited excellent adsorption performance, it manufactured into various forms of honeycomb, hollow fiber and disc. As a result, the adsorption performance was lower than that of the powder, but it is advantageous in view of applicability. In addition, it was confirmed that the disc adsorbent having excellent thermal durability due to the characteristics of the manufacturing process stably maintains adsorption performance even at a high temperature desorption process several times.

Preparation and Thermal Behavior of Monodispersed $Al_2O_3-TiO_2$ Powder Synthesized by Alkoxide Method

  • Song, Yong-Won;Kim, Gyun-Joong;Park, Sang-Heul
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.137-142
    • /
    • 1995
  • Monodispersed $Al_2O_3-TiO_2$ Powder was prepared by metal-alkoxide hydrolsis. A homogeneous nucleation/growth occurred in the solutions containing ethanol, butanol and acetonitrile, and resulted in spherical, submicrometer-sized powder. The titania and the alumina crystals were formed at $800^{\circ}C$ and $1000^{\circ}C$, respectively. These crystala were subsequently reacted each other beyond $1320^{\circ}C$ and formed $Al_2TiO_5$. The relative densities of sintered bodies prepared with as-received powder were examined at the temperature range of 1300-$1500^{\circ}C$ and they were about 79% at $1300^{\circ}C$. The formation of aluminum titanata decreased the relative density at the temperature range of 1300-$1450^{\circ}C$, and at above $1450^{\circ}C$, the relative density started to increase again. It was observed that $\alpha-Al_2O_3$-doped aluminum titanate was more stable than pure aluminum titante at $1200^{\circ}C$.

  • PDF